Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2011, Volume 51, Number 5, Pages 771–790 (Mi zvmmf9331)  

This article is cited in 3 scientific papers (total in 3 papers)

Hyperbolic spline interpolation algorithms

B. I. Kvasov

Institute of Computational Technologies, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent'eva 6, Novosibirsk, 630090 Russia
Full-text PDF (707 kB) Citations (3)
References:
Abstract: Isogeometric interpolation by hyperbolic splines is formulated as a differential multipoint boundary value problem. A discretization of this problem results in the necessity of solving a linear system with a five-diagonal matrix. This system can be ill-conditioned if the data are nonuniformly distributed. It is shown that this system can be split into tridiagonal systems with the property of diagonal dominance. The latter do not require that hyperbolic functions be evaluated. Their solution is numerically stable and can be efficiently parallelized on the basis of the superposition principle. For quasiuniform grids, these systems have positive definite matrices. Algorithms for parallelizing calculations in the case of tri- and five-diagonal systems are given.
Key words: isogeometric interpolation, differential multipoint boundary value problem, grid method, discrete hyperbolic spline in tension, superposition principle, parallelization of elimination method.
Received: 31.05.2010
English version:
Computational Mathematics and Mathematical Physics, 2011, Volume 51, Issue 5, Pages 722–740
DOI: https://doi.org/10.1134/S0965542511050095
Bibliographic databases:
Document Type: Article
UDC: 519.652.3
Language: Russian
Citation: B. I. Kvasov, “Hyperbolic spline interpolation algorithms”, Zh. Vychisl. Mat. Mat. Fiz., 51:5 (2011), 771–790; Comput. Math. Math. Phys., 51:5 (2011), 722–740
Citation in format AMSBIB
\Bibitem{Kva11}
\by B.~I.~Kvasov
\paper Hyperbolic spline interpolation algorithms
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 5
\pages 771--790
\mathnet{http://mi.mathnet.ru/zvmmf9331}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2859144}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 5
\pages 722--740
\crossref{https://doi.org/10.1134/S0965542511050095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290935800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79957438758}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9331
  • https://www.mathnet.ru/eng/zvmmf/v51/i5/p771
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025