Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 6, Pages 1010–1041 (Mi zvmmf9619)  

Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: The Dirichlet problem for a singularly perturbed ordinary differential convection–diffusion equation with a small parameter $\varepsilon$ ($\varepsilon\in (0,1]$) multiplying the higher order derivative is considered. For the problem, a difference scheme on locally uniform meshes is constructed that converges in the maximum norm conditionally, i.e., depending on the relation between the parameter $\varepsilon$ and the value $N$ defining the number of nodes in the mesh used; in particular, the scheme converges almost $\varepsilon$-uniformly (i.e., its accuracy depends weakly on $\varepsilon$). The stability of the scheme with respect to perturbations in the data and its conditioning are analyzed. The scheme is constructed using classical monotone approximations of the boundary value problem on a priori adapted grids, which are uniform on subdomains where the solution is improved. The boundaries of these subdomains are determined by a majorant of the singular component of the discrete solution. On locally uniform meshes, the difference scheme converges at a rate of $O(\min[\varepsilon^{-1}N^{-K}\ln N, 1]+N^{-1}\ln N)$, where $K$ is a prescribed number of iterations for refining the discrete solution. The scheme converges almost $\varepsilon$-uniformly at a rate of $O(N^{-1}\ln N)$ if $N^{-1}\le \varepsilon^\nu$, where $\nu$ (the defect of $\varepsilon$-uniform convergence) determines the required number $K$ of iterations ($K=K(\nu)\sim \nu^{-1}$) and can be chosen arbitrarily small from the half-open interval $(0, 1]$. The condition number of the difference scheme satisfies the bound $\boldsymbol{\kappa}_P=O(\varepsilon^{-1/K}\ln^{1/K}\varepsilon^{-1}\delta^{-(K+1)/K})$ where $\delta$ is the accuracy of the solution of the scheme in the maximum norm in the absence of perturbations. For sufficiently large $K$, the scheme is almost $\varepsilon$-uniformly strongly stable.
Key words: singularly perturbed boundary value problem, ordinary differential convection–diffusion equation, a priori adapted grids, locally uniform meshes, almost $\varepsilon$-uniform convergence, maximum norm, strong stability of difference schemes, conditioning of difference schemes.
Received: 14.12.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 6, Pages 895–925
DOI: https://doi.org/10.1134/S0965542512060139
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: G. I. Shishkin, “Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection–diffusion equation”, Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012), 1010–1041; Comput. Math. Math. Phys., 52:6 (2012), 895–925
Citation in format AMSBIB
\Bibitem{Shi12}
\by G.~I.~Shishkin
\paper Strong stability of a scheme on locally uniform meshes for a singularly perturbed ordinary differential convection--diffusion equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 6
\pages 1010--1041
\mathnet{http://mi.mathnet.ru/zvmmf9619}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3245176}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012CMMPh..52..895S}
\elib{https://elibrary.ru/item.asp?id=17745729}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 6
\pages 895--925
\crossref{https://doi.org/10.1134/S0965542512060139}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305735100007}
\elib{https://elibrary.ru/item.asp?id=20472761}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863191321}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9619
  • https://www.mathnet.ru/eng/zvmmf/v52/i6/p1010
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025