Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 3, Pages 521–538 (Mi zvmmf9675)  

This article is cited in 25 scientific papers (total in 25 papers)

Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle

S. A. Nazarov

Institute of Mechanical Engineering Problems, Russian Academy of Sciences, Vasil’evskii Ostrov, Bol’shoi pr. 61, St. Petersburg, 199178 Russia
References:
Abstract: Perturbations of an eigenvalue in the continuous spectrum of the Neumann problem for the Laplacian in a strip waveguide with an obstacle symmetric about the midline are studied. Such an eigenvalue is known to be unstable, and an arbitrarily small perturbation can cause it to leave the spectrum to become a complex resonance point. Conditions on the perturbation of the obstacle boundary are found under which the eigenvalue persists in the continuous spectrum. The result is obtained via the asymptotic analysis of an auxiliary object, namely, an augmented scattering matrix.
Key words: waveguide with an obstacle, perturbation, eigenvalue in the continuous spectrum, enforced stability, augmented scattering matrix.
Received: 04.05.2011
Revised: 25.08.2011
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 3, Pages 448–464
DOI: https://doi.org/10.1134/S096554251203013X
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: S. A. Nazarov, “Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle”, Zh. Vychisl. Mat. Mat. Fiz., 52:3 (2012), 521–538; Comput. Math. Math. Phys., 52:3 (2012), 448–464
Citation in format AMSBIB
\Bibitem{Naz12}
\by S.~A.~Nazarov
\paper Enforced stability of an eigenvalue in the continuous spectrum of a~waveguide with an~obstacle
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 3
\pages 521--538
\mathnet{http://mi.mathnet.ru/zvmmf9675}
\zmath{https://zbmath.org/?q=an:06057605}
\elib{https://elibrary.ru/item.asp?id=17647716}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 3
\pages 448--464
\crossref{https://doi.org/10.1134/S096554251203013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303535800009}
\elib{https://elibrary.ru/item.asp?id=17981905}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859347729}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9675
  • https://www.mathnet.ru/eng/zvmmf/v52/i3/p521
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025