Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2012, Volume 52, Number 11, Pages 2004–2022 (Mi zvmmf9752)  

This article is cited in 2 scientific papers (total in 2 papers)

Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods

G. Yu. Kulikov

CEMAT, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049–001 Lisboa, Portugal
Full-text PDF (291 kB) Citations (2)
References:
Abstract: The phenomenon is studied of reducing the order of convergence by one in some classes of variable step size Nordsieck formulas as applied to the solution of the initial value problem for a first-order ordinary differential equation. This phenomenon is caused by the fact that the convergence of fixed step size Nordsieck methods requires weaker quasi-consistency than classical Runge–Kutta formulas, which require consistency up to a certain order. In other words, quasi-consistent Nordsieck methods on fixed step size meshes have a higher order of convergence than on variable step size ones. This fact creates certain difficulties in the automatic error control of these methods. It is shown how quasi-consistent methods can be modified so that the high order of convergence is preserved on variable step size meshes. The regular techniques proposed can be applied to any quasi-consistent Nordsieck methods. Specifically, it is shown how this technique performs for Nordsieck methods based on the multistep Adams–Moulton formulas, which are the most popular quasi-consistent methods. The theoretical conclusions of this paper are confirmed by the numerical results obtained for a test problem with a known solution.
Key words: Initial value problem for a first-order ordinary differential equation, Nordsieck methods consistency and quasi-consistency, order reduction phenomenon, extended Nordsieck methods.
Received: 23.01.2012
Revised: 13.06.2012
English version:
Computational Mathematics and Mathematical Physics, 2012, Volume 52, Issue 11, Pages 1547–1564
DOI: https://doi.org/10.1134/S0965542512110085
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: G. Yu. Kulikov, “Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods”, Zh. Vychisl. Mat. Mat. Fiz., 52:11 (2012), 2004–2022; Comput. Math. Math. Phys., 52:11 (2012), 1547–1564
Citation in format AMSBIB
\Bibitem{Kul12}
\by G.~Yu.~Kulikov
\paper Solving the order reduction phenomenon in variable step size quasi-consistent Nordsieck methods
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 11
\pages 2004--2022
\mathnet{http://mi.mathnet.ru/zvmmf9752}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3247703}
\elib{https://elibrary.ru/item.asp?id=18059286}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 11
\pages 1547--1564
\crossref{https://doi.org/10.1134/S0965542512110085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314305700007}
\elib{https://elibrary.ru/item.asp?id=20950750}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869767865}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9752
  • https://www.mathnet.ru/eng/zvmmf/v52/i11/p2004
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025