Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2008, Volume 48, Number 10, Pages 1819–1846 (Mi zvmmf98)  

This article is cited in 53 scientific papers (total in 53 papers)

Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves

V. A. Galaktionova, S. I. Pokhozhaevb

a Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
b Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia
References:
Abstract: Shock waves and blowup arising in third-order nonlinear dispersive equations are studied. The underlying model is the equation in
\begin{equation} u_t=(uu_x)_{xx}\quad\text{in}\quad\mathbb R\times\mathbb R_+. \label{1} \end{equation}
It is shown that two basic Riemann problems for Eq. (1) with the initial data
$$ S_{\pm}(x)=\mp\operatorname{sign}{x} $$
exhibit a shock wave ($u(x,t)\equiv S_{-}(x)$) and a smooth rarefaction wave (for $S_{+}$), respectively. Various blowing-up and global similarity solutions to Eq. (0.1) are constructed that demonstrate the fine structure of shock and rarefaction waves. A technique based on eigenfunctions and the nonlinear capacity is developed to prove the blowup of solutions. The analysis of Eq. (1) resembles the entropy theory of scalar conservation laws of the form $u_t+uu_x=0$, which was developed by O. A. Oleinik and S. N. Kruzhkov (for equations in $x\in\mathbb R^N$ ) in the 1950s–1960s.
Key words: general theory of partial differential equations, nonlinear dispersive equations, shock waves, rarefaction and blowup waves, Riemann's problem, entropy theory of scalar conservation laws.
Received: 08.04.2008
English version:
Computational Mathematics and Mathematical Physics, 2008, Volume 48, Issue 10, Pages 1784–1810
DOI: https://doi.org/10.1134/S0965542508100060
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. A. Galaktionov, S. I. Pokhozhaev, “Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves”, Zh. Vychisl. Mat. Mat. Fiz., 48:10 (2008), 1819–1846; Comput. Math. Math. Phys., 48:10 (2008), 1784–1810
Citation in format AMSBIB
\Bibitem{GalPok08}
\by V.~A.~Galaktionov, S.~I.~Pokhozhaev
\paper Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2008
\vol 48
\issue 10
\pages 1819--1846
\mathnet{http://mi.mathnet.ru/zvmmf98}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2493769}
\zmath{https://zbmath.org/?q=an:1177.76183}
\elib{https://elibrary.ru/item.asp?id=11533048}
\transl
\jour Comput. Math. Math. Phys.
\yr 2008
\vol 48
\issue 10
\pages 1784--1810
\crossref{https://doi.org/10.1134/S0965542508100060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262335000006}
\elib{https://elibrary.ru/item.asp?id=13595292}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54249094599}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf98
  • https://www.mathnet.ru/eng/zvmmf/v48/i10/p1819
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025