Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 9, Pages 1419–1426
DOI: https://doi.org/10.7868/S0044466913090020
(Mi zvmmf9911)
 

This article is cited in 1 scientific paper (total in 1 paper)

Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Kalinina 7a, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (189 kB) Citations (1)
References:
Abstract: Given a function $\mathbb{L}_2(\mathbb{R})$, its Fourier transform
$$ g(x)=\hat{f}(x)=F[f](x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-ixt}dt,\quad f(t)=F^{-1}[g](t)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}g(x)e^{ixt}dx $$
and the inverse Fourier transform are considered in the space $f\in\mathbb{L}_2(\mathbb{R})$. New estimates are presented for the integral $ \int_{|t|\geqslant N}|g(t)|^2dt=\int_{|t|\geqslant N}|\hat{f}(t)|^2dt, \quad N\geqslant1 $, in the vase of $f\in\mathbb{L}_2(\mathbb{R})$ characterized by the generalized modulus of continuity of the $k$th order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.
Key words: Fourier transform in $\mathbb{L}_2(\mathbb{R})$, inverse Fourier transform, Steklov function, generalized modulus of continuity, estimates.
Received: 01.04.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 9, Pages 1231–1238
DOI: https://doi.org/10.1134/S0965542513090029
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$”, Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013), 1419–1426; Comput. Math. Math. Phys., 53:9 (2013), 1231–1238
Citation in format AMSBIB
\Bibitem{AbiAbiKer13}
\by V.~A.~Abilov, F.~V.~Abilova, M.~K.~Kerimov
\paper Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 9
\pages 1419--1426
\mathnet{http://mi.mathnet.ru/zvmmf9911}
\crossref{https://doi.org/10.7868/S0044466913090020}
\elib{https://elibrary.ru/item.asp?id=20193343}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 9
\pages 1231--1238
\crossref{https://doi.org/10.1134/S0965542513090029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325962000001}
\elib{https://elibrary.ru/item.asp?id=20455682}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884195488}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9911
  • https://www.mathnet.ru/eng/zvmmf/v53/i9/p1419
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025