|
This article is cited in 1 scientific paper (total in 1 paper)
Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$
V. A. Abilova, F. V. Abilovab, M. K. Kerimovc a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Kalinina 7a, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Abstract:
Given a function $\mathbb{L}_2(\mathbb{R})$, its Fourier transform
$$
g(x)=\hat{f}(x)=F[f](x)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-ixt}dt,\quad f(t)=F^{-1}[g](t)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{+\infty}g(x)e^{ixt}dx
$$
and the inverse Fourier transform are considered in the space $f\in\mathbb{L}_2(\mathbb{R})$. New estimates are presented for the integral $
\int_{|t|\geqslant N}|g(t)|^2dt=\int_{|t|\geqslant N}|\hat{f}(t)|^2dt, \quad N\geqslant1
$, in the vase of $f\in\mathbb{L}_2(\mathbb{R})$ characterized by the generalized modulus of continuity of the $k$th order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.
Key words:
Fourier transform in $\mathbb{L}_2(\mathbb{R})$, inverse Fourier transform, Steklov function, generalized modulus of continuity, estimates.
Received: 01.04.2013
Citation:
V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some new estimates of the Fourier transform in $\mathbb{L}_2(\mathbb{R})$”, Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013), 1419–1426; Comput. Math. Math. Phys., 53:9 (2013), 1231–1238
Linking options:
https://www.mathnet.ru/eng/zvmmf9911 https://www.mathnet.ru/eng/zvmmf/v53/i9/p1419
|
|