|
This article is cited in 1 scientific paper (total in 1 paper)
Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$
V. A. Abilova, F. V. Abilovab, M. K. Kerimovc a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Kalinina 7a, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Abstract:
The Fourier–Bessel integral transform
$$
g(x)=F[f](x)=\frac1{2^p\Gamma(p+1)}\int_0^{+\infty}t^{2p+1}f(x)j_p(xt)dt
$$
is considered in the space $\mathbb{L}_2(\mathbb{R}_+)$. Here, $j_p(u)=((2^p\Gamma(p+1))/(u^p))J_p(u)$ and $J_p(u)$ is a Bessel function of the first kind. New estimates are proved for the integral
$$
\delta^2_N(f)=\int_N^{+\infty}x^{2p+1}g^2(x)dx,\quad N>0,
$$
in $\mathbb{L}_2(\mathbb{R}_+)$ for some classes of functions characterized by a generalized modulus of continuity.
Key words:
Fourier–Bessel integral transform, Bessel operator, shift operator, generalized modulus of continuity, Fourier-Bessel transform estimates.
Received: 11.05.2013
Citation:
V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1622–1628; Comput. Math. Math. Phys., 53:10 (2013), 1440–1446
Linking options:
https://www.mathnet.ru/eng/zvmmf9926 https://www.mathnet.ru/eng/zvmmf/v53/i10/p1622
|
|