Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 10, Pages 1622–1628
DOI: https://doi.org/10.7868/S0044466913100025
(Mi zvmmf9926)
 

This article is cited in 1 scientific paper (total in 1 paper)

Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Dagestan State University, ul. Gadzhieva 43a, Makhachkala, 367025, Russia
b Dagestan State Technical University, pr. Kalinina 7a, Makhachkala, 367015, Russia
c Dorodnicyn Computing Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 119333, Russia
Full-text PDF (186 kB) Citations (1)
References:
Abstract: The Fourier–Bessel integral transform
$$ g(x)=F[f](x)=\frac1{2^p\Gamma(p+1)}\int_0^{+\infty}t^{2p+1}f(x)j_p(xt)dt $$
is considered in the space $\mathbb{L}_2(\mathbb{R}_+)$. Here, $j_p(u)=((2^p\Gamma(p+1))/(u^p))J_p(u)$ and $J_p(u)$ is a Bessel function of the first kind. New estimates are proved for the integral
$$ \delta^2_N(f)=\int_N^{+\infty}x^{2p+1}g^2(x)dx,\quad N>0, $$
in $\mathbb{L}_2(\mathbb{R}_+)$ for some classes of functions characterized by a generalized modulus of continuity.
Key words: Fourier–Bessel integral transform, Bessel operator, shift operator, generalized modulus of continuity, Fourier-Bessel transform estimates.
Received: 11.05.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 10, Pages 1440–1446
DOI: https://doi.org/10.1134/S0965542513100023
Bibliographic databases:
Document Type: Article
UDC: 519.651
Language: Russian
Citation: V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some new estimates of the Fourier–Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1622–1628; Comput. Math. Math. Phys., 53:10 (2013), 1440–1446
Citation in format AMSBIB
\Bibitem{AbiAbiKer13}
\by V.~A.~Abilov, F.~V.~Abilova, M.~K.~Kerimov
\paper Some new estimates of the Fourier--Bessel transform in the space $\mathbb{L}_2(\mathbb{R}_+)$
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 10
\pages 1622--1628
\mathnet{http://mi.mathnet.ru/zvmmf9926}
\crossref{https://doi.org/10.7868/S0044466913100025}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3254885}
\elib{https://elibrary.ru/item.asp?id=20280319}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 10
\pages 1440--1446
\crossref{https://doi.org/10.1134/S0965542513100023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325962300003}
\elib{https://elibrary.ru/item.asp?id=21883343}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886006745}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9926
  • https://www.mathnet.ru/eng/zvmmf/v53/i10/p1622
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025