Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2013, Volume 53, Number 10, Pages 1668–1678
DOI: https://doi.org/10.7868/S0044466913100050
(Mi zvmmf9930)
 

This article is cited in 4 scientific papers (total in 4 papers)

Method for finding an approximate solution of the asphericity problem for a convex body

S. I. Dudov, E. A. Meshcheryakova

Saratov State University, ul. Astrakhanskaya 83, Saratov, 410012, Russia
Full-text PDF (231 kB) Citations (4)
References:
Abstract: Given a convex body, the finite-dimensional problem is considered of minimizing the ratio of its circumradius to its inradius (in an arbitrary norm) by choosing a common center of the circumscribed and inscribed balls. An approach is described for obtaining an approximate solution of the problem, whose accuracy depends on the error of a preliminary polyhedral approximation of the convex body and the unit ball of the used norm. The main result consists of developing and justifying a method for finding an approximate solution with every step involving the construction of supporting hyperplanes of the convex body and the unit ball of the used norm at some marginal points and the solution of a linear programming problem.
Key words: asphericity, convex body, approximate solution method, polyhedral approximation, distance function of the nearest and farthest points of a set.
Received: 19.04.2013
English version:
Computational Mathematics and Mathematical Physics, 2013, Volume 53, Issue 10, Pages 1483–1493
DOI: https://doi.org/10.1134/S0965542513100059
Bibliographic databases:
Document Type: Article
UDC: 519.65
Language: Russian
Citation: S. I. Dudov, E. A. Meshcheryakova, “Method for finding an approximate solution of the asphericity problem for a convex body”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1668–1678; Comput. Math. Math. Phys., 53:10 (2013), 1483–1493
Citation in format AMSBIB
\Bibitem{DudMes13}
\by S.~I.~Dudov, E.~A.~Meshcheryakova
\paper Method for finding an approximate solution of the asphericity problem for~a~convex body
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 10
\pages 1668--1678
\mathnet{http://mi.mathnet.ru/zvmmf9930}
\crossref{https://doi.org/10.7868/S0044466913100050}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3254889}
\elib{https://elibrary.ru/item.asp?id=20280323}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 10
\pages 1483--1493
\crossref{https://doi.org/10.1134/S0965542513100059}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000325962300007}
\elib{https://elibrary.ru/item.asp?id=21883317}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84885991235}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf9930
  • https://www.mathnet.ru/eng/zvmmf/v53/i10/p1668
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025