
Math-Net.Ru
All Russian mathematical portal

A. S. Fokas, Integrability and beyond,
Zap. Nauchn. Sem. POMI, 1996, Volume 235, 235–
244

https://www.mathnet.ru/eng/znsl3651

Use of the all-Russian mathematical portal Math-Net.Ru implies that you

have read and agreed to these terms of use

https://www.mathnet.ru/eng/agreement

Download details:

IP: 18.97.14.84

June 13, 2025, 07:40:27

https://www.mathnet.ru/eng/znsl3651
https://www.mathnet.ru/eng/znsl3651


A. S. Fokas 

I N T E G R A B I L I T Y A N D B E Y O N D 

§1. INTRODUCTION 

In the last twenty years or so a great number of nonlinear equations 
has been solved exactly. These equations take the form of partial differ­
ential equations (PDE's), of ordinary differential equations (ODE's), of 
differential difference equations, of difference-difference equations, etc. 
The method of solution of these equations, which we shall refer to as the 
inverse spectral m e t h o d (ISM), is based on the association of the giv­
en nonlinear equation with a pair of linear equations known as Lax pair 
[1]. Regarding continuous equations it has been established that: (a) 
nonlinear PDE's in x,y,t (like the Kadomtsev-Petviashvili equation), 
(b) nonlinear PDE's in x,t (like the Korteweg - de Vries equation), (c) 
nonlinear ODE's in t with explicit t- dependence (like the Painleve tran­
scendents) and (d) nonlinear ODE's in t (like the Arnold top) lead to 
investigating inverse problems for: (a) linear PDE's in x, y, (b) linear 
ODE's in x, (c) linear ODE's in the spectral parameter A, and (d) A-
matrices, i.e., linear algebraic equations depending on the spectral pa­
rameter A. These inverse problems can be solved in terms of local [2] 
and nonlocal [3] Riemann-Hilbert problems, of д problems [4, 5] and of 
Riemann - theta functions [6-11]. 

In this note we shall summarize the following recent developments: 
(a) There exist functional equations which can also be solved using 

an appropriate version of the inverse spectral method. 
(b) The combination of the inverse spectral method and general PDE 

techniques can be used to linearize initial-boundary value problems of 
the nonlinear Schrodinger (NLS) and other integrable equations. 

§2. INVERSE SPECTRAL METHOD, ALGEBRAIC 
GEOMETRY AND FUNCTIONAL EQUATIONS 

We give a summary of the results obtained in [12]. 
Consider the functional equations 

q(x,y)q(yz) _ r ( ) + r ( ,> y ) = ^ y ( g y ( , , , ) , (2.1) 
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for the unknown functions q(x,y), r(x,y) ш\6.р1(х,у), ...,pm(x,y), where 
the functional parameters y1(x), ...,jm(x) are given. We notice that, in 
the case m = 1, -y(y) = 1, q(x,y) = q(x - y), r(x,y) = r(x - y) = 
—r(y - x), p(x,y) = p(x — y), this equation reduces to the functional 
equation 

qJ0^-r(x)-r(y)=P(x + y). (2.2) 

This equation was introduced and solved by Calogero and Bruschi in 
connection with integrable many-body problems [13]. 

It is possible to solve equation (2.1) by considering the following dis­
crete approximation 

lijlik 
гц - rkj + V pj-fcT,-. h 3, & distinct, (2.3) 

in which the n-dimensional vectors 7J, / = 1,..., m are given and the n x n 
matrices qij, r8J- andp'-,- are the unknowns. Any solution of the functional 
equations (2.1) determines a solution of the algebraic equations (2.3) by 
choosing arbitrary interpolation points X\,..., xn and putting 

l) = r'(*;•)> 4ij = ?(*•> Xj), rij = r(xi,Xj), p'ij = p'(xi, Xj). 

In the simplest case m = 0 the algebraic equation (2.3) becomes 

" m± = r. rk (2.4a) 
<lik 

We show that the general solution of this algebraic system has the form 

where Xj ф 0, Vj ф 0, Zj, fj, j = 1,..., n are arbitrary constants (z,- ф Zj 
for i ф j). 

For the next case (m = 1) 

JLJl = n . _ r j.. + p f j f c T . ; (2.5a) 
4ik 

we show that the general solution is parametrized by elliptic functions 

Vi a(Zj - Zi - Z0) ,., •; / o e i \ 
Vj cr(zo)a{Zj — Zi) 
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where Zj, zo, Vj, j — 1, ...,n are arbitrary constants, and a, £ are the 
well-known Weierstrass elliptic functions. 

The method of solution of the algebraic equations (2.3) is based on 
the fact that the equations (2.3) are equivalent to the commutativity 
conditions 

[LAi,LAj] = Q, i,j = l , . . . , n - m (2.6) 

for a family of n — m linear A-matrices of the form 

LAi = \Ai + UAiy Ai=diag(a\,...,al
n), 

UA, = {uAiPq)i<Ptq<n, i= l,...,n- m. 

This allows one to solve (2.3) in terms of theta functions using an ap­
propriate version of the ISM. 

We remark that the commutativity conditions for Л-matrices can be 
used to characterize the stationary points of integrable ODE's (e.g., inte­
grable tops). In particular, the equations (2.4)-(2.7) provide parametriza-
tions of the stationary points of the Euler-Arnold-Manakov top. For 
n — m = 2, it was proposed in [14] to consider the commutativity equa­
tion (2.6) (which is a system of purely algebraic equations for the entries 
of the matrices UAl, UA2) as "algebraic integrable equations." We note 
that equations (2.3) are not the first algebraic equations to be solved by 
the ISM. In fact, Krichever [15] applied ISM to classify two-component 
solutions of the Yang-Baxter equation. However, because the structure 
of the underlying linear equations associated with (2.3) and with the 
Yang-Baxter equation is different, the method used here is substantially 
different from the one used in [15]. 

The results regarding equations (2.4) imply that 

*<*'»> = г у У п г ' (* ,v) = T ^ ^ M + ™ (2-8) v(y)(z(x) - z{y)) z(x) - z(y) 

solve the functional equation (2.1) for 7'(я) = 0, where А(я), v(x), z(x), 
and f(x) are arbitrary functions. Similarly 

t \ - (\v(x}a(z(y)~z(x)~z°) 
ЯК*, У) - 7 W v{y) a{zo)<z{y) _ z{x)) - ( 2 9 ) 

r(x, y) = -y(y)C(z(x) - z(y)) 

solve the functional equation (2.1) for m = 1, where z(x) and v(x) are 
also arbitrary functions. 
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§3. THE LINEARIZATION OF AN INITIAL-BOUNDARY 
VALUE PROBLEM FOR THE N L S 

We give a summary of the results obtained in [17]. 
For integrable equations, a method exists for solving the initial-value 

problem on the infinite line for decaying initial data. For evolution equa­
tions in one spatial variable, this method reduces the solution of the 
Cauchy problem to the formulation of a Riemann-Hilbert (RH) prob­
lem. This RH problem is essentially determined by the ж-part of the 
associated Lax pair; the /-part of the Lax pair plays only an auxiliary 
role. In the case of the nonlinear Schrodinger (NLS) equation, the rele­
vant RH problem is formulated in the complex &-plane with a jump on 
Im(fc) = 0, and is depicted in Fig. 3.1. 

-± / J_ -Ь(к)е-« \ 
— \Щк)ев 1-\\Ь(к)\2)' 

Fig. 3.1 

The function b(k) is called scattering data and can be computed in 
terms of initial data. The x,t dependence of the RH of Fig. 3.1 enters 
through 6(x,t) = 2i(kx + 2kH). 

We have developed a new method for studying initial-boundary value 
problems on the half-infinite line for decaying initial and boundary data. 
This formalism also reduces the solution of the initial-boundary value 
problem to the solution of a single RH problem. However, for the for­
mulation of this RH problem, both the x— and the t—parts of the Lax 
pair play an important role. Actually, it is the t-pa.it which determines 
where, in the complex i-plane, the jumps occur. In the case of the NLS 
the jumps occur on Im(&2) = 0, which is a reflection of the fact that 
the /-part of the Lax pair contains к2, which in turn is a consequence of 
the fact that the NLS involves a second derivative in x. We have found 
that the analysis of this problem, in addition to techniques from exact 
integrability, it also requires the essential use of more general PDE tech­
niques. In the cases studied so far, the exact methods could be used to 
establish existence of global solutions as well as to study the properties of 
these solutions. In contrast, in the problem studied here exact methods 
are used only to study the properties of solutions. We believe that this 
hybrid between exact methods and general PDE techniques, can provide 
a powerful approach for analyzing problems of mathematical and physi-

http://t-pa.it
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cal significance. We expect that a wide class of problems can be analyzed 
in a similar manner. 

We consider the NLS equation 

iqt+q*x-2\\q\2q = Q, i,te[0,oo); A = ± 1 , (3.1) 

where q(x,0) = u(x) and g(0,t) = v(t) are given. We assume that 

u(x)eH2(R+), v(t)eC2{M.+), u(0) = v(fi), xu(x) 

and x2u{x)eL2(R+),v{t)eL1nL2(R+), 

v'(t), tv(t), tv'(t), ir/'(*)ebi(M+), 

where H2 denotes that a function and its first two derivatives belong to 
L2, C2 denotes that a function is twice differentiable, and prime denotes 
differentiation. 

The cases A = 1 and A = — 1 are usually referred to as the defocus-
ing and focusing cases, respectively. Equation (3.1) is the compatibility 
condition of the following Lax pair for the 2 x 2 matrix w(x, t, k) [2], 

wx + ikcr^w = Qw, (3.3a) 

wt + Uw = wC(t), U(x,t,k) = 2ik2(T3 + i\\q\2a3-2kQ + iQx<T3, (3.36) 

where <т3 = diag(l,—1), the 2 x 2 matrix C(t) is an arbitrary function 
oft, and Q(x,t) is an off-diagonal matrix with 12 and 21 entries given 
by q and Xq, respectively. 

We have developed the following linearization scheme for the solu­
tion of the initial-boundary value problem of the NLS. Given q(x,0) 
construct sf and s j by sf(k) = Vi(0,&), «£(&) ^ ^2 (ОД), where 
(r()i(x,k), ф2(х,к))т is the solution of (3.3a) with q(x,t) replaced by 
q(x,0), satisfying the boundary condition lim {{i>i,^2)T exp(—ikx)] = 

x~>oo 
(0,1)T . Define b(k) by b = sf/~sf. Let c(k), кеШ~ U Ш+ be the bound­
ary value of a function meromorphic for kell (I, II, III, IV denote the 
first, second, third, and fourth quadrants of the complex fc-plane), with 
poles at the zeros of s j (к) and at the points {kj}^, к jell which are 
assumed to be different than the zeros of s^(fc) (generic case); let Cj de­
note the residues of c(k) at kj\ also c(k) —> 0 as к —• oo. Having sf(k), 
s2(k) and c(k) solve a RH problem for a 2 x 2 meromorphic function 
Zp with possible poles only at {feJ}]V. This RH problem is depicted in 
Fig. 3.2. Finally determine q(x,t) by q(x,t) = 2i\\m.k^00{kZp(x,i,k))i2, 
kel, where the subscript 12 denotes the 12 components of the matrix Zp. 
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The points {kj}^ (which have the meaning of the discrete spectrum of 
equation (3.3b) evaluated at x = 0 and supplemented with the boundary 
condition wis^k) — W2sf(k) = 0 at t — 0) give rise to solitons which 
always move away from the boundary. 

(«(*)«• i ) 
II I 

( l - A c e - M f 1 -b'~' A ( 1 ° V . - + ( _ i _ -Ъ(к)е-в \ 
\0 I I {\be<> 1-A|6|2-V ^ « ЦТ + ~ IV ^ **<*)"' 1-А|6(Аг)|2У 

(l -\Ще-в\ 

Fig. 3.2 

The RH problem associated with the initial-boundary val­
ue problem of NLS. The x,t dependence enters only through 
0{x,t) = 2i(kx + 2kH). 

Unfortunately, although we have a complete characterization of the 
analytic properties of c(k), we have not found an effective way of comput­
ing c(k) in terms of g(0, t) and q(x, 0). (For more details see the discussion 
below). In spite of this fact we can give an effective description of the 
long time behavior (A = — 1): 

^ • " = -2"- c o s h P M ^ O - A , ] + ° " '>' (3.4, 

where 

TO' ~4t=t>+0ty 3 = 1,-,N, 

rjj =lm(kj), £j —Re(kj), (3.5a) 

"" V""* г • it \ n ,kj — ki, fj = -^+ arg Cj + J2 [sign(6 - £j) - 1] arg( f - )+ 

-xjAt (3.56) 

(»-Ы2 + п] 
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Aj = - log2t)j + log \Cj\+ J2 [siSn(& ~ Zi) ~ 4 loS 

— £ / At 

JUL f Ьё[1 + 16(/.) + ЗД2] 
- o o 

(3.5c) 
All kjell, thus all £j < 0 and the solitons move away from the bound­
ary. The summation terms in the above equations describe the interac­
tion among solitons, while the integration terms describe the interaction 
between solitons and the dispersive part. 

Discussion. The linearization scheme we have developed can be sum­
marized as follows: Given q(x,0), construct b(k). Then, if c(k) is any 
suitably decaying function meromorphic for kell, the solution of the 
RH problem of Fig. 3.2 generates the solution q(x,t) corresponding to 
initial data q(x, 0) and some boundary data 5(0, t). The main limitation 
of our result is that for given q(x,Q) and q(0,t) we cannot construct c{k) 
by solving a linear problem. Nevertheless, we claim that for any given 
q(x, 0) and q(0, t) satisfying (3.2), the corresponding function c(k) exists; 
in other words, the RH problem of Fig. 3.2 solves the initial-boundary 
value problem (3.1) for general initial-boundary data. 

The RH problem of Fig. 3.2 is quite natural. Comparing the RH prob­
lems of Fig. 3.1 and Fig. 3.3 we see that the jumps for кеШ+ are identical. 
The jump for fc«'IR+ can not have a nonzero entry in the 12 position since 
e~e is unbounded for fceiM"1". The jump for fceilR- follows by symmetry 
considerations. Finally the jump for кеШ~ follows from the cyclic con­
dition that the product of the jump matrices equals unity (this is a 
reflection of continuity at к — 0). The fact that c(k) has analytic contin­
uation for kell can also be easily understood. At t — 0, the RH problem 
of Fig. 3.2 must be reduced to the one that defines д(ж,0). At t = 0, 
the term ee has analytic continuation in II. Thus the jumps along the 
imaginary axis can be mapped to a jump on the negative real axis. In 
this way, at t = 0 one finds the RH problem of Fig. 3.1 with в replaced 
by 2ikx. This RH problem corresponds precisely to д(ж,0). 

The fact that q(x,Q), q(Q,t) and c(k) are related in a nonlinear way 
is a reflection of the fact that qx(0, t) depends nonlinearly on q(x, 0) and 
g(0,t). To appreciate this we first recall the solution of the linearized 
problem 

*9t + 9ix = 0, x,te[0,oo), (3.6) 
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where q(0,t) and q(x, 0) are given and decaying for large t and large x. 
This problem can be solved by the sine transform. However, in order 
to draw comparisons with the nonlinear problem we shall use a Fourier 
transform 

oo 

q{k,t)= I dxeikxq{x,t). (3.7) 
о 

The evolution of the Fourier data q(k, t) is given by 

qt + ik2q = iqx(0, t) + kq(0,t). (3.8) 

In equation (3.8), q(Q, t) is known but qx(0, t) is unknown (the sine trans­
form is precisely used in order to eliminate qx(0,t)). This apparently 
ominus situation can be bypassed by using the fact that the solution 
q(k,t) of (3.8) is analytic in the upper half of the к complex plane. It 
turns out that this requirement implies 

oo 

q(k,0) = - Jdteik2t(iqx(0,t) + kq(0,t)). (3.9) 
0 

Given q(x, 0) and q(0,t), and using the substitution к = е1Ж/4,/р, р > 0, 
equation (3.9) yields qx(Q,t). It is important to notice that if qx(0,t) 
and q(0,t) are arbitrary functions, then the r.h.s. of equation (3.9) will 
be analytic for kel U III. However, in order for qx(0,t) and q(0,t) to 
be the boundary values of the solution of equation (3.6), it is necessary 
and sufficient that the r.h.s. of equation (3.9) has analytic continuation 
across the positive imaginary к axis (q(k, 0) is analytic for kel UII). 

We now discuss the nonlinear problem. Let (ipi(t, k), ^(t, k))T be the 
solution of the vector equation 

фг + (2ik2a3 + i\\q(0,t)\2a3 - 2kQ(0,t) + iQx(0,t)a3)ii = 0, (3.10) 

satisfying the boundary condition lim [(^i, ^г)ехр(—2ikH) = (0 ,1)T . 
t—юо 

Let r{k) = ipi(Q,k)/ip2(Q,k). It turns out that for arbitrary decaying 
functions q(0, i) and qx(0, t), r(k) is a meromorphic function for kelUlII 
and r{k) —• 0 as к —• oo. However, if ^(0, i) and qx(0, t) are the boundary 
values of the NLS then in addition r(k) satisfies 

г(к)=8-Ш, kel, (3.11) 
s2 (к) 
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where sf and ŝ " are determined from q(x, 0) and are analytic for кеЮП. 
Equation (3.11) is the analogue of equation (3.9). It shows that although 
the relationship between д(ж,0), q((M), and qx(0,t) is highly nonlinear, 
its reflection in the fc-plane (scattering space) is rather simple: r(k) has 
analytic continuation across the positive imaginary к axis. 

There exists an invertible correspondence between the "potential" 
{g(0,2),gr(0,t)} and the scattering data r(fc): Given g(0,t) and qx{0,t), 
equation (3.10) implies r(k). Conversely given a meromorphic function 
r(fc), one can find q(0,t) and qx(0,t) by solving a RH problem with the 
jump r(k) for к2еЖ. This provides an effective way for deriving pairs of 
functions 5(0,t) and qx(0,t) compatible with a given q(x,0). Indeed, 
given д(ж,0) one first computes r(k) for kel from equation (3.11). Let 
r(k), kel 11 be any suitably decaying meromorphic function. Then the 
solution of the above RH problem yields g(0,t) and qx(0,t)-

Unfortunately, given g(0,i) and q(x,0) we cannot compute r(k) for 
kelll by solving a linear problem. This is a consequence of the fact that 
now we have a "mixed" problem where one gives "half" the potential, 
i.e. q(0,t) and "half" the scattering data, i.e. r(k), for kel. It turns out 
that this problem can be formulated as a nonlinear RH problem and 
will be discussed elsewhere. 

The study of the large t behavior of q(x,t) reduces to the study of 
the large t behavior of the RH problem of Fig. 3.2. Because the x,t 
dependence of this RH problem is rather simple, it is possible to give an 
effective asymptotic description of q(x,t) as t —»• 00. 

It was mentioned earlier that the analysis of equation (3.1) requires 
an essential use of general PDE techniques. This follows from the fact 
that in order to study the map between {q{0,t),qx(0,t)} and r(k) one 
needs apriori estimates for qx(Q,t). The uniqueness and existence of a 
global solution for the NLS on the quarter plane is established in [18]. 
This result makes fundamental use of certain equations which are the 
analogues of the first three conserved quantities. Therefore, this theory 
uses L2 estimates. However, the methods of exact integrability are based 
on L\ estimates. It was therefore crucial for us to extend the results of 
[18] from L2 to L\. This poses significant technical difficulties which are 
discussed in [17] and [19]. 
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