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Аннотация. Иерархия k[S] и ее строгая версия представляют собой две деформации
коммутативной алгебры k[S], с k = R или k = C, в пространстве N × N матриц, где
S — матрица оператора сдвига. В работе показано, что обе деформации соответствуют
сопряжению k[S] элементами подходящей группы. При этом одевающая матрица дефор-
мации единственна в случае иерархии k[S] и определяется с точностью до умножения на
единичную в случае строгой иерархии k[S]. Эта единственность позволяет непосредствен-
но доказать, что форма Лакса иерархии k[S] равносильна семейству уравнений Сато–
Вильсона. Аналог уравнений Сато–Вильсона для строгой иерархии k[S] всегда приводит
к уравнениям Лакса этой иерархии. Эти системы эквивалентны, если окружение, в кото-
ром рассматривается иерархия, разрешимо по Коши в одномерном пространстве. В работе
также представлена банахова группа Ли G(S2) и две ее подгруппы P+(H) и U+(H), где
U+(H) ⊂ P+(H), такие, что однородные пространства G(S2)/P+(H) и G(S2)/U+(H) да-
ют решения иерархии k[S] и ее строгой версии, соответственно.
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Dedicated to Alexander Ivanovich Bulgakov
at the anniversary of his 70-th birthday

Introduction

In [1] we introduced a wide collection of integrable hierarchies in the N × N -matrices
corresponding to deformations of various commutative Lie subalgebras of the algebra LTN(k)

of all N × N -matrices with coefficients from k that possess only a finite number of nonzero
diagonals above the central diagonal. In the present paper we focus on the subalgebra
k[S] = {

∑N
i=0 aiS

i | ai ∈ k} and prove some additional results for the k[S] -hierarchy and
its strict version. We start by showing that k[S] is a maximal commutative subalgebra of
LTN(k) and that each of the two deformations of S corresponds to conjugations with elements
from its appropriate group, where the deforming group is larger for the strict version. In both
cases the evolution equations of the deformed generator is a set of Lax equations for this
generator and this deformed generator together with the set of Lax equations it satisfies forms
an integrable hierarchy. The dressing matrix of the deformation turns out to be unique in the
case of the k[S] -hierarchy and it is determined up to a multiple of the identity in the strict
case. The uniqueness of the dressing matrix enables one to prove directly the equivalence of the
Lax form of the k[S]-hierarchy with a set of Sato–Wilson equations. There exists an analogue
of the Sato–Wilson equations for the strict k[S] -hierarchy. It always implies the Lax equations
of this hierarchy. Both systems can be shown to be equivalent if the setting one works in, is
Cauchy solvable in dimension one.

Solutions of both hierarchies are constructed by producing wave matrices in the linearization
module of each hierarchy. Therefore we recall the essentials of this approach. We conclude
by presenting a Banach Lie group G(S2), the two subgroups P+(H) and U+(H) of G(S2),

U+(H) ⊂ P+(H), and by giving the construction from the flag variety G(S2)/P+(H) of a wave
matrix of the k[S] -hierarchy and from its cover G(S2)/U+(H) of a wave matrix of the strict
k[S] -hierarchy.

The content of the various sections is as follows: Section 1. describes the scene of the
deformations, the algebra LTN(R), the maximality of k[S] and the properties required later on.
The next section is devoted to the description of the two deformations, it contains a discussion
of the Lax equations they have to satisfy and we describe there the link with their Sato–
Wilson form. The form of the relevant LTN(R) -module, the equations of the linearization and
a characterization of the special vectors, called wave matrices, can all be found in Section 3.
In the last section we present the homogeneous spaces G(S2)/P+(H) and G(S2)/U+(H) and
show how to construct wave matrices of the k[S] -hierarchy and its strict version from them.

1. The algebra LTN(R)

Let R be a commutative k -algebra over the field k. We write Mn(R) for the n × n -
matrices with coefficients from R and similarly MN(R) for the space of N×N -matrices with
coefficients from R. The transpose AT of any matrix A ∈ MN(R) is defined as in the finite
dimensional case. Let V be the R -module of all 1×N -matrices with coefficients from R, i. e.

V = RN = {~x = (xj) =
(
x0 x1 x2 · · ·

)
| xj ∈ R for all j ∈ N}.

Inside V we consider for each i ∈ N the R -submodules

V6i = {~x = (xj) | xj = 0 for all j > i} and Vfin = ∪i∈NV6i.
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The space Vfin is a free R -module with basis the {~e (i) | i ∈ N}, where ~e (i) is the vector with
the i -th coordinate equal to one and the remaining ones equal to zero. For each ~x ∈ Vfin and
each A ∈ MN(R) the product ~xA is well-defined and determines a vector in V. Hence, if we
write

MA(~x) := ~xA,

then MA is an R -linear map in HomR(Vfin, V ). The subspace of MN(R) that is central in
this paper is the space LTN(R) of all A ∈ MN(R) that possess the property that there is an
m ∈ N such that for all i ∈ N there holds

MA(V6i) ⊂ V6i+m. (1.1)

Property (1.1) implies that LTN(R) is an algebra w.r.t. matrix multiplication. Inside LTN(R)

there are some classes of basic matrices with their own notation: first of all there are the basic
matrices E(i,j), i and j ∈ N, whose matrix entries, in Kronecker notation, are given by

(E(i,j))mn = δimδjn.

It is convenient to use the notation A =
∑

n,m a(i,j)E(i,j) for an A = (a(i,j)) ∈ LTN(R). The
second class of matrices for which we introduce a special notation are the diagonal matrices.
Let {d(s) | s ∈ N} be a set of of elements in R. Then the diagonal matrix diag( d(s) ) in
MN(R) is given by

diag(d(s)) :=
∑
s∈N

d(s)E(s,s) =


d(0) 0 0 . . .

0 d(1) 0
. . .

0 0 d(2)
. . .

... . . . . . . . . .

 .

The algebra of all diagonal matrices in MN(R) is denoted by

DN(R) = {d = diag(d(s))| d(s) ∈ R for all s ∈ N}.

One has a diagonal embedding i1 from R into DN(R) by taking all diagonal coefficients of
i1(r) equal to r, i. e.

i1(r) =


r 0 0 . . .

0 r 0
. . .

0 0 r
. . .

... . . . . . . . . .

 .

A central role in this paper is played by the shift matrix S, its transpose ST and their
powers, where S is the matrix corresponding to the operator MS : V → V defined by

MS(
(
x0 x1 x2 · · ·

)
) =

(
0 x0 x1 x2 · · ·

)
.

Note that we have
SST = Id and STS =

∑
i>1

E(i,i). (1.2)
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Besides the expression in the basic matrices it is also convenient to have at one’s disposal
the decomposition of a matrix A = (aij) ∈ MN(R) in its diagonals. If m > 0, then the m -th
diagonal of A is by definition the matrix

dm(A)Sm = diag(a(s,s+m))S
m =

∑
i>0

a(i,i+m)E(i,i+m)

and those diagonals are called positive. Similarly, for m 6 0, the m -th diagonal of A is defined
as the matrix

(ST )−mdm(A) = (ST )−mdiag(a(s−m,s)) =
∑
i>0

a(i−m,i)E(i−m,i)

and they are called negative. So each matrix A ∈MN(R) decomposes uniquely as

A =
∑
m>0

dm(A)Sm +
∑
m<0

(ST )−mdm(A). (1.3)

We use the decomposition (1.3) to assign a degree to elements of LTN(R). For a nonzero
A ∈ LTN(R) the degree is equal to m if its highest nonzero diagonal is the m -th and the
degree of the zero element is −∞.

Lemma 1.1. The centralizer in LTN(R) of the matrix S consists of the

{
∑
j>0

i1(rj)S
j | rj ∈ R}.

P r o o f. Let A = (a(i,j)) belong to LTN(R). Then we have on one hand

AS =


0 a(0,0) · · · a(0,n) · · ·
...

... . . . ...
0 a(n,0) · · · a(n,n) · · ·
...

...
...

 (1.4)

and on the other

SA =


a(1,0) a(1,1) · · · a(1,n+1) · · ·
a(2,0) a(2,1) · · · a(2,n+1) · · ·
...

... . . . ...
a(n+1,0) a(n+1,1) · · · a(n+1,n+1) · · ·

...
...

...

 . (1.5)

If the expressions (1.4) and (1.5) are equal then induction w.r.t. i shows first of all that A

is uppertriangular, i. e. for all j < i, a(i,j) = 0. For the remaining coefficients the identity
AS = SA yields then that a(i,j) = a(i+1,j+1) for all i 6 j. This proves the claim.

A consequence of Lemma 1.1 is the following property of k[S] = {
∑N

i=0 kiS
i | ki ∈ k} :

Corollary 1.1. The algebra k[S] is a maximal commutative subalgebra of LTN(k).
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As any associative algebra, LTN(R) is a Lie algebra with the commutator as a bracket. We
use two decompositions of LTN(R) into the direct sum of two Lie subalgebras. The first splits
elements of LTN(R) as follows

A = πut(A) + πslt(A) =
∑
m>0

dm(A)Sm +
∑
m<0

(ST )mdm(A)

and the second as

A = πsut(A) + πlt(A) =
∑
m>0

dm(A)Sm +
∑
m60

(ST )mdm(A).

The first way to split elements of LTN(R) yields the Lie algebra decomposition

LTN(R) = πut(LTN(R))⊕ πslt(LTN(R)), where
πut(LTN(R)) = {A ∈ LTN(R) | πut(A) = A},
πslt(LTN(R)) = {A ∈ LTN(R) | πslt(A) = A}.

The second leads to

LTN(R) = πsut(LTN(R))⊕ πlt(LTN(R)), where
πsut(LTN(R)) = {A ∈ LTN(R) | πsut(A) = A},
πlt(LTN(R)) = {A ∈ LTN(R) | πlt(A) = A}.

Inside LTN(R) we associate a group to each of the Lie subalgebras πslt(LTN(R)) and
πlt(LTN(R)). Note that on πslt(LTN(R)) the exponential map is well-defined and yields elements
in

U− = U−(R) = {Id +Y | Y ∈ πslt(LTN(R))}.

One easily verifies that U− is a group w.r.t. multiplication. We see U− as the group correspon-
ding to πslt(LTN(R)). If the exponential map is well-defined on πlt(LTN(R)), then the resulting
elements belong to the group

P− = P−(R) = {A =
∑
m60

(ST )mdm(A) | d0(A) = diag(d(s)), all d(s) ∈ R∗}

and therefore we see P− as the group associated with πlt(LTN(R)).

2. The k[S] -hierarchy and its strict version

In this section we discuss the two deformations of k[S] that we consider and the evolution
equations we want the deformations of S to satisfy. At the first deformation each

∑
i>0 kiS

i

in k[S] is deformed into
∑

i>0 kiLi, where L ∈ LTN(R) is an element of the form

L = S +
∑
i60

(ST )i`i, `i ∈ DN(R). (2.1)

One directly checks that any element USU−1, with U ∈ U−, has this form and we call
USU−1 a U− -deformation of S. We call U also the dressing matrix of USU−1. At the second
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deformation we transform each matrix
∑

i>0 kiS
i ∈ k[S] into

∑
i>0 kiMi, where M∈ LTN(R)

is an element of the form

M = m1S +
∑
i60

(ST )imi,mi ∈ DN(R),m1 ∈ DN(R)∗. (2.2)

Also in this case one easily verifies that any matrix PSP−1, with P ∈ P−, possesses the form
(2.2) and therefore it is called a P− -deformation of S. Likewise we call P also the dressing
matrix of the deformation PSP−1. Moreover, we have

Lemma 2.1. Reversely there holds for the deformations (2.1) and (2.2)

(a) Any L of the form (2.1) can uniquely be written in the form L = USU−1 with U ∈ U−,
i.e. L is a U− -deformation of S.

(b) Any M of the form (2.2) can be written in the form M = dUSU−1d−1, where U ∈ U−
is unique and d ∈ DN(R)∗ is determined up to a factor from i1(R∗). In particular, M
is a P− -deformation of S.

P r o o f. We start with a proof of statement (a). So, given an L of the form (2.1), we have
to find an U = Id +

∑
j>1(ST )juj, uj ∈ DN(R), such that LU = US. For any U ∈ U− the

matrix LU −US has no strict positive diagonals. So, it suffices to show that for all n > 0 the
equations

d−k(LU) = d−k(US), 0 6 k 6 n,

determine the {u1, · · · , un+1} uniquely. Hereby we use the relations in (1.2) and the following
two relations between S, ST and the diagonal matrices:

STdiag(d(s))S = STS diag(1, d(0), d(1), · · · ) = diag(0, d(0), d(1), · · · ), (2.3)
diag(d(s))ST = STdiag(d(s+ 1)). (2.4)

By applying (2.3) one gets for US the expression

US = S +
∑
j>1

(ST )jujS = S +
∑
j>1

(ST )jS diag(1, uj(0), uj(1), · · · )

= S +
∑
j>1

(ST )j−1 diag(0, uj(0), uj(1), · · · ).

From this expression we conclude for each n > 0 that

d−n(US) = diag(0, un+1(0), un+1(1), · · · ). (2.5)

Now we apply the first relation in (1.2) and repeatedly relation (2.4) to the product LU and
get

LU = S +
∑
i>0

(ST )i`i + S
∑
j>1

(ST )juj +
∑
i > 0

j > 1

(ST )i`i(S
T )juj

= S +
∑
i>0

(ST )i`i +
∑
j>1

(ST )j−1uj +
∑
i > 0

j > 1

(ST )i+j diag(`i(s+ j))uj.
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Thus we get d0(LU) = `0 + u1 and for the remaining diagonal components of LU

d−n(LU) = `n + un+1 +
n∑
k=1

diag(`k−1(s+ n+ 1− k))un+1−k, n > 1. (2.6)

The equality d0(LU) = d0(US) is in terms of the diagonal components of L and U the
identity

`0 + u1 = diag(0, u1(0), u1(1), · · · ).

The (0, 0) -entry of this matrix identity yields u1(0) = −`0(0), the (1, 1) -entry gives
u1(1) = u1(0) − `0(1) and continuing in this fashion, one gets that any u1(s) is a linear
combination of the matrix coefficients of `0. By induction w.r.t. n we may assume that the
equations

d−k(LU) = d−k(US), 0 6 k 6 n− 1,

determine the {u1, · · · , un} and each uk(s), s ∈ N and , 0 6 k 6 n − 1, is a polynomial
expression in the matrix coefficients of the {`k, 0 6 k 6 n− 1}. By combining the expressions
(2.5) and (2.6) we get for n > 1 from d−n(US) = d−n(LU) the relation

un+1 = diag(0, un+1(0), un+1(1), · · · )− `n −
n∑
k=1

diag(`k−1(s+ n+ 1− k))un+1−k.

Again we look successively at the diagonal entries of this matrix identity, starting with the
(0, 0) -entry and recalling that all un+1−k(s) are known. This yields us

un+1(0) = −`n(0)−
n∑
k=1

`k−1(n+ 1− k)un+1−k(0).

Next we consider the (1, 1) -entry and that gives us

un+1(1) = un+1(0)− `n(1)−
n∑
k=1

`k−1(n+ 2− k)un+1−k(1).

Continuing in this fashion, one gets that any un+1(s) is a polynomial expression in the matrix
coefficients of `0, · · · , `n. This proves the claim in item (a).

The proof of statement (b) can be reduced to that of (a) by the following observation:
take an arbitrary element k ∈ DN(R) and an d = diag(d(s)) ∈ DN(R)∗. Then there holds
d−1kSd = diag(d(s+1)

d(s)
)kS. Given any M of the form (2.2), choose a d ∈ DN(R)∗ such that

for all s ∈ N the element d(s+1)
d(s)

equals m1(s)−1. Then the matrix d−1Md has the form (2.1)
and, hence there is a unique U ∈ U− such that d−1Md = USU−1. Then M equals PSP−1

with P = dU ∈ P−. In this case d is not unique, because any element i1(a), with a ∈ R∗, is
in the center of LTN(R) and there also holds M = i1(a)dUSU−1d−1i1(a−1).

Next we discuss the evolution equations that an U− -deformation L of S has to satisfy
and those for a P− -deformation M of S. Hereby each Si, i > 1, is seen as an infinitesimal
generator of a flow. In that light we assume in both cases that R is equipped with a set of
commuting k -linear derivations {∂i : R → R | i > 1}, where each ∂i should be seen as
an algebraic substitute for the derivative w.r.t. the flow parameter corresponding to the flow
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generated by each Si. By letting each ∂i act coefficient wise on matrices in LTN(R), we get
a set of derivations of LTN(R), also denoted by {∂i}. The data (R, {∂i | i > 1}) we call a
setting for both deformations.

For each U− -deformation L of S and all i > 1 we consider the cut-off’s

Bi(S) := πut(Li). (2.7)

Note that, since all {Li} commute, the {Bi(S) | i > 1} satisfy for all m > 1

[Bi(S),Lm] = −[πslt(Li),Lm],

where the right hand side is of degree m−1 or lower, like ∂i(L). This shows that it makes sense
to unite the following set of Lax equations for the Lm in one combined system, the so-called
k[S] -hierarchy:

∂i(Lm) = [Bi(S),Lm] = −[πslt(Li),Lm]. (2.8)

It suffices to prove the equations just for m = 1. For, since ∂i and ad(Bi(S)) are both k -
linear derivations of LTN(R), all basis elements {Lm | m > 1} of the deformation k[L] of
k[S] satisfy the same Lax equations. The equations (2.8) itself are called the Lax equations
of the k[S] -hierarchy. Note that the Lax equations (2.8) show that the action of each ∂i on
the coefficients of L expresses each of them in a polynomial expression of the coefficients of
L. Any U− -deformation L of S in LTN(R) that satisfies all the equations (2.8), i > 1, is
called a solution of the k[S] -hierarchy in the setting (R, {∂i}). Note that in each setting there
is at least one solution of the k[S] -hierarchy, namely L = S, the trivial solution of the k[S] -
hierarchy. We can express the conditions when a U− -deformation L = USU−1 is a solution of
the k[S] -hierarchy, in terms of U. For there holds

Lemma 2.2. Any L = USU−1, with U ∈ U− is a solution of the k[S] -hierarchy, if and
only if U satisfies the relations: for all i > 1

∂i(U)U−1 = −πslt(Li). (2.9)

P r o o f. Since ∂i(U
−1) = −U−1∂i(U)U−1, we get for L = USU−1 that

∂i(L) = [∂i(U)U−1,L].

If U satisfies (2.9), then [−πslt(Li),L] = [Bi(S),L] yields the Lax equations for L. Reversely,
if L is a solution of the k[S] -hierarchy, then ∂i(U)U−1 + πslt(Li) commutes with L and thus
Û = U−1(∂i(U)U−1 + πslt(Li))U commutes with S. The element Û only has strict negative
diagonals and Lemma 1.1 implies that Û = 0 and this proves the claim.

Since the relations (2.9) are the analogue of the Sato–Wilson equations for the KP hierarchy
[3], we call them the Sato–Wilson form of the k[S] -hierarchy. Still another equivalent form of
the k[S] -hierarchy was proven in [1]:

P r o p o s i t i o n 2.1. Let L be a U− -deformation of S with the {Bi(S)} as in (2.7).
If L is a solution of the k[S] -hierarchy, then they satisfy the zero curvature relations

∂i1(Bi2(S))− ∂i2(Bi1(S))− [Bi1(S),Bi2(S)] = 0. (2.10)

Reversely, if the projections {Bi(S)} of a U− -deformation L satisfy the zero curvature rela-
tions (2.10), then L satisfies the Lax equations (2.8).
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R e m a r k 2.1. By the equivalence in Proposition 2.1 the set of equations (2.10) is also
called the zero curvature form of the k[S] -hierarchy. Let d0(Li) the zero-th diagonal of Li,
then the equations (2.10) imply that the commuting diagonal matrices {d0(Li)} satisfy the
compatibility conditions

∂i1(d0(Li2)) = ∂i2(d0(Li1)), for all i1 > 1, and i2 > 1.

Next we treat the evolution equations for the P− -deformations {Mm | m > 1}. In that
case we consider for each i > 1 the strict cut-off

Ci(S) := πsut(Mi). (2.11)

Since all the Mi commute, there holds

[Ci(S),Mm] = −[πlt(Mi),Mm],

which shows that the {Ci(S) | i > 1} have the common property that the commutator with
Mm has degree m or lower. The same holds for the matrix ∂i(Mm), so it makes sense to
unite the following set of Lax equations for the {Mm} in one combined system

∂i(Mm) = [Ci(S),Mm] = −[πlt(Mi),Mm]. (2.12)

Because of the form of the {Ci(S)} and the similarity with the Lax equations (2.8) we call
this system the strict k[S] -hierarchy. The equations (2.12) itself are called the Lax equations
of the strict k[S] -hierarchy. Note that also in the strict case the Lax equations (2.12) show
that the action of each ∂i on the coefficients of M expresses each of them in a polynomial
expression of the matrix coefficients of M. Any P− -deformation M of S in LTN(R) that
satisfies all the equations (2.12) is called a solution of the strict k[S] -hierarchy in the setting
(R, {∂i}). By the same argument as for the k[S] –case, it suffices to prove the equations (2.12)
for m = 1, since all basis elements {Mm | m > 1} of the wider deformation k[M] of k[S]

satisfy the same Lax equations. Note that in each setting there is at least one solution of the
strict k[S] -hierarchy, namely M = S, the trivial solution of the strict k[S] -hierarchy. Also
for the strict k[S] -hierarchy we found in [1] an equivalent zero curvature form

P r o p o s i t i o n 2.2. Let M be a P− -deformation of S with the {Ci(S)} as in (2.11).
If M is a solution of the strict k[S] -hierarchy, then the {Ci(S)} satisfy the zero curvature
relations

∂i1(Ci2(S))− ∂i2(Ci1(S))− [Ci1(S), Ci2(S)] = 0. (2.13)

On the other hand, if the projections {Ci(S)} of a P− -deformation M satisfy the zero
curvature relations (2.13), then M satisfies the Lax equations (2.12).

To discuss a Sato–Wilson form of the strict k[S] -hierarchy, requires some care, for the
dressing matrix of S is not unique as we saw in part (b) of Lemma 2.1, and therefore we need
the following notion:

D e f i n i t i o n 2.1. Let (R, {∂i}) be a setting for both hierarchies. This setting is called
Cauchy solvable in dimension one, if , given a collection of elements {ai | i > 1} in R satisfying
the compatibility conditions

∂i1(ai2) = ∂i2(ai1), for all i1 > 1 and i2 > 1,

there is an α ∈ R∗ such that there holds for all i > 1, ∂i(α) = aiα.
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E. g. the formal power series k[[ti]] with all the ∂i = ∂
∂ti

is such a setting. Now there holds

P r o p o s i t i o n 2.3. Let the setting (R, {∂i}) be Cauchy solvable in dimension one and
let M be a P− -deformation that is a solution of the strict k[S] -hierarchy in this setting. Then
there is a P ∈ P− with M = PSP−1 such that

∂i(P )P−1 = −πlt(Mi). (2.14)

Reversely, any M = PSP−1 with P satisfying (2.14), is a solution of the strict k[S] -hierarchy

P r o o f. Since ∂i(P
−1) = −P−1∂i(P )P−1, we get for M = PSP−1 that

∂i(M) = [∂i(P )P−1,M].

If P satisfies (2.14), then [−πlt(Mi),M] = [Ci(S),M] yields the Lax equations for M. Note
that the proof of the sufficiency of equations (2.14) does not require R to be Cauchy solvable
in dimension 1. This we need in the proof of the reverse statement. Assume M = PSP−1

is a solution of the strict k[S] -hierarchy, where P = d−1U, with d ∈ DN(R)∗ and U ∈ U−
and we write . The first thing we notice is that ∂i(P )P−1 + πlt(Mi) commutes with M and
thus P̂ = P−1(∂i(P )P−1 + πlt(Mi))P commutes with S. The element P̂ only has negative
diagonals and Lemma 1.1 implies that πslt(P̂ ) = 0 and the zero-th diagonal of P̂ commutes
with S. This last fact implies that the zero-th diagonal d0(P̂ ) belongs to i1(R) and that lies
in the center of LTN(R). So P−1d0(P̂ )P = d0(P̂ ) and thus

P−1(πslt(∂i(P )P−1 + πlt(Mi)))P = πslt(P̂ ) = 0.

Hence P̃ = πslt(∂i(P )P−1 + πlt(Mi)) = 0. On the other hand we have

P̃ = d−1∂i(U)U−1d+ πslt(Mi) = d−1∂i(U)U−1d+ d−1πslt(Li)d = 0,

so that according to Lemma 2.2 L is a solution of the k[S] -hierarchy. Let d0(Li) be the
zero-th diagonal of Li. Then the {d0(Li)} satisfy the compatibility relations from Remark 2.1.
A direct computation yields that

d0(P̂ ) = ∂i(d
−1)d+ `0(i) = `0(i)− ∂i(d)d−1 = i1(ai), with ai ∈ R.

Since there holds for all i1 > 1 and i2 > 1 that

∂i1(∂i2(d)d−1) = ∂i1∂i2(d)d−1 − ∂i2(d)∂i1(d)d−2 = ∂i2(∂i1(d)d−1),

we get in total that the {ai} satisfy the compatibility conditions in Definition 2.1 and there is an
α ∈ R∗ such that for all i > 1, ∂i(α)α−1 = ai. Then conjugating S with Pα := i1(α−1)d−1U

also yields M and there holds ∂i(Pα)P−1
α = −πlt(Mi) and this concludes the proof of the

claims.

We call the relations (2.14) the Sato–Wilson equations of the strict k[S] -hierarchy.

R e m a r k 2.2. From the proof of Proposition 2.3 follows that, if P = d−1U ∈ P−,
M = PSP−1 and L = USU−1, then P satisfies the equations (2.14), if and only if L is a
solution of the k[S] -hierarchy and ∂i(d) = d0(Li)d, for all i > 1. This equivalence we meet
again in the next section, but in a different form.
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3. Wave matrices

Let (R, {∂i}) be a setting where one looks for solutions to both hierarchies. The construction
from the homogeneous spaces of solutions of both hierarchies is done by producing special
vectors, called wave matrices, in a suitable LTN(R) -module that we briefly recall. We start
with the upper triangular matrix

ψ0 = ψ0(t, S) = exp(
∞∑
i=1

tiS
i) =


1 p1(t) p2(t) . . .

0 1 p1(t) . . .

0 0 1
. . .

...
... . . . . . .

 ,

where t is the short hand notation for {ti | i > 1} and each pj(t) is a homogeneous polynomial
of degree j in the {ti | i 6 j}, where every ti has degree i. Note that ψ0 commutes with S

and satisfies for all i > 1, ∂
∂ti

(ψ0) = Siψ0. Recall that each ∂i was the algebraic substitute on
R for the partial derivative w.r.t. the flow parameter of Si. Therefore we write ∂i(ψ0) = ∂

∂ti
(ψ0).

The LTN(R) -module that we need consists of formal products of a perturbation factor from
LTN(R) and ψ0. The products will be formal, for in order to make sense out of the product
of a matrix from LTN(R) and the matrix ψ0 as a matrix requires convergence conditions and
we want to give an algebraic description of the module. Consider therefore the space O(S)

consisting of the formal products{
{m(S)}ψ0 =

{∑
i>0

miS
i +
∑
i<0

(ST )−imi

}
ψ0,mi ∈ DN(R)

}
. (3.1)

Addition resp. scalar multiplication are defined on O(S) by adding up the perturbation factors
of two elements resp. by applying the scalar multiplication on the perturbation factor. Some-
thing similar is done with the LTN(R) -module structure: for each h(S) ∈ LTN(R) define

h(S).{m(S)}ψ0 := {h(S)m(S)}ψ0.

Clearly this makes O(S) into a free LTN(R) -module with generator ψ0. However, Besides the
LTN(R) -action also each ∂i acts on O(S) by the formula

∂i({m(S)}ψ0) :=

{
N∑
k=0

∂i(mk)S
k +

∑
k<0

(ST )−k∂i(mk) +m(S)Si

}
ψ0.

Here we impose a Leibnitz rule on the formal product. Finally there is a right hand action of
S on O(S). Since S and ψ0 commute, we can define it by

{m(S)}ψ0S := {m(S)S}ψ0.

Analogous to the terminology in the function case, see e. g. [2], we call the elements of O(S)

oscillating N×N -matrices. Note that any ψ = ψ̂ψ0 = h(S)ψ0 with h(S) invertible is a genera-
tor of the free LTN(R) -module O(S). Examples are the choices h(S) ∈ P− resp. h(S) ∈ U− in
which case we call ψ an oscillating N×N -matrix of type P− resp. U−. With the three actions
just defined we can introduce inside LTN(R) two systems of equations leading to solutions of
the two hierarchies.
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For the k[S] -hierarchy, this system looks as follows: consider a U− -deformation L of S in
LTN(R) with the set of projections {Bi(S) := πut(Li)}. The goal is now to find an oscillating
N × N -matrix ψ = {h(S)}ψ0 of type U− such that in O(S) the following set of equations
holds

Lψ = ψS and ∂i(ψ) = Bi(S)ψ, for all i > 1. (3.2)

Since O(S) is a free LTN(R) -module with generator ψ, the first equation Lψ = ψS implies
Lh(S) = h(S)S and thus L = h(S)Sh(S)−1. By Lemma 2.1 this determines h(S) uniquely.
The same argument allows you to translate each ∂i(ψ) = Bi(S)ψ into an identity in LTN(R) :

∂i(ψ) = {∂i(h(S)) + h(S)Si}ψ0 = {∂i(h(S))h(S)−1 + Li}ψ = Bi(S)ψ.

Thus we get that h(S) satisfies the Sato–Wilson equations (2.9) and L is a solution of the
k[S] -hierarchy. The system (3.2) is called the linearization of the k[S] -hierarchy and ψ a wave
matrix of the k[S] -hierarchy. Note that ψ0 is the wave matrix corresponding to the trivial
solution of the k[S] -hierarchy, L = S.

In the case of the strict k[S] -hierarchy we start with a P− -deformation M of S together
with the projections {Ci(S) := πsut(Mi)}. Now we look for an oscillating N × N -matrix
ϕ = {k(S)}ψ0 of type P− that satisfies in O(S) the following set of equations:

Mϕ = ϕS and ∂i(ϕ) = Ci(S)ϕ, for all i > 1. (3.3)

Also ϕ is a generator of O(S) and again we can translate the equations (3.3) into identities
in LTN(R). Thus the first equation Mϕ = ϕS becomes M = k(S)Sk(S)−1 and the second
set of equations in (3.3) yields the Sato–Wilson equations (2.14) of the strict k[S] -hierarchy.
In particular, M is a solution of that hierarchy. The system (3.3) is called the linearization
of the strict k[S] -hierarchy and a ϕ satisfying this system a wave matrix of the strict k[S] -
hierarchy. Because the second set of equations in (3.3) is a different form of those in (2.14), the
conditions in Remark 2.2 translate directly to a link between wave matrices of the hierarchies
under consideration.

For both hierarchies, we use in the sequel a milder property that oscillating N×N -matrices
of a certain type have to satisfy, in order to become a wave matrix of that hierarchy. For a
proof, see [1].

P r o p o s i t i o n 3.1. Let ψ = {h(S)}ψ0 be an oscillating N × N -matrix of type U−
in O(S) and L = h(S)Sh(S)−1 the corresponding potential solution of the k[S] -hierarchy.
Similarly, let ϕ = {k(S)}ψ0 be an oscillating N×N -matrix of type P− in O(S) with potential
solution M = k(S)Sk(S)−1 of the strict version.

(a) Assume there exists for each i > 1 an element Mi ∈ πut(LTN(R)) such that

∂i(ψ) = Miψ.

Then each Mi = πut(Li) and ψ is a wave matrix for the k[S] -hierarchy.

(b) Suppose there exists for each i > 1 an element Ni ∈ πsut(LTN(R)) such that

∂i(ϕ) = Niϕ.

Then each Ni = πsut(Mi) and ϕ is a wave matrix for the strict k[S] -hierarchy.
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R e m a r k 3.1. Since you do not meet formal products of lower triangular N×N -matrices
and upper triangular N × N -matrices in real life, the only way to construct wave matrices of
both hierarchies is to give an analytic framework, where you can produce well-defined products
of such matrices. This is done in the next section.

4. The construction of solutions of both hierarchies

All the relevant N×N -matrices that will be produced in the sequel correspond to bounded
operators acting on a separable real or complex Hilbert space. Since k = R or C, we have on
k a norm | · | : k → R>0. The Hilbert space we will work with is a space of 1 × N matrices.
Thereto we denote, for each n ∈ N, the row vector with a 1 on the n -th entry and all other
entries equal to zero by ~e (n)T , i. e.

~e (n)T = (· · · , 0, 1, 0, · · · ).

Consider now the k -linear space of 1× N matrices

H = {
∑
n∈N

an~e (n)T = (a0, a1, a2, · · · ) | an ∈ k,
∑
n∈N

|an|2 <∞},

which becomes a real or complex Hilbert space w.r.t. the inner product

(
∑
n∈N

an~e (n)T |
∑
n∈N

bn~e (n)T ) :=
∑
n∈N

anbn,

depending of k = R or C. The elements {~e (n)T | n ∈ N} form by definition a Hilbert basis in
H. In the sequel we need the subspaces {Hi, i ∈ N} of H and their orthogonal complements
H⊥i given by

Hi = {
∑
n6i

an~e (n)T ∈ H} and H⊥i = {
∑
n>i

an~e (n)T ∈ H}.

Any b ∈ B(H), the space of all bounded k -linear maps from H to itself, can be defined w.r.t.
the {~e (n)T} by right multiplication M[b] with an N× N -matrix [b] = (bij) i. e.

b(~e (j)T ) = M[b](~e (j)T ) = ~e (j)T [b] =
∑
i∈N

bji~e (i)T .

This choice implies for all b1 and b2 ∈ B(H) that [b1 ◦ b2] = [b2][b1]. The invertible transfor-
mations in B(H) are denoted by GL(H) and its group of matrices by [GL(H)].

Two decompositions of B(H) play a role in the sequel. The first splits a b ∈ B(H) as
b = u−(b) + p+(b), with the corresponding matrices

[u−(b)] =


0 0 0 . . .

b1 0 0 0 . . .

b2 0 b2 1 0 . . .
...

...
... . . .

 and [p+(b)] =


b0 0 b0 1 b0 2 . . .

0 b1 1 b1 2 . . .

0 0 b2 2 . . .
...

...
... . . .

 .

It gives rise to the decomposition of the Lie algebra B(H) as U−(H)⊕ P+(H), where

U−(H) = {b ∈ B(H) | b = u−(b)} and P+(H) = {b ∈ B(H) | b = p+(b)}. (4.1)
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The second decomposition consists of splitting a b ∈ B(H) as b = p−(b) + u+(b), where
the matrices of both components are given by

[p−(b)] =


b0 0 0 0 . . .

b1 0 b1 1 0 . . .

b2 0 b2 1 b2 2 . . .
...

...
... . . .

 and [u+(b)] =


0 b0 1 b0 2 . . .

0 0 b1 2 . . .

0 0 0 . . .
...

...
... . . .

 .

This leads to the decomposition B(H) = P−(H)⊕ U+(H) of B(H), where

P−(H) = {b ∈ B(H) | b = p−(b)} and U+(H) = {b ∈ B(H) | b = u+(b)}. (4.2)

Before we present the Lie algebra of the central group G(S2) in this paper, we need some
notations. We denote the space of Hilbert-Schmidt operators from H to H by S2. It is the
two-sided ideal of compact operators in B(H) such that for each A ∈ S2

||A||22 := trace(A∗A) = trace(|A|2) <∞.

Here A∗ denotes the adjoint of A. In terms of the matrix coefficients (aij) of [A] the Hilbert-
Schmidt condition is simply ∑

i,j∈N

|aij|2 <∞. (4.3)

The map A → ||A||2 defines the Hilbert-Schmidt norm on S2, with respect to which it is
complete. Consider now the subspace B(S2) of B(H) defined by

B(S2) = {b ∈ B(H) | u−(b) ∈ S2}.

Consider two elements b1 and b2 in B(S2). Since S2 is a two-sided ideal in B(H), all U−(H) -
components of u−(b1)p+(b2), p+(b1)u−(b2) and u−(b1)u−(b2) belong to S2. Hence b1b2 ∈
B(S2) and thus B(S2) is een algebra. We put on B(S2) a different Banach structure than
the one induced by the operator norm on B(H), namely we take the Banach structure that
is the direct sum of the Hilbert-Schmidt norm on U−(S2) and the operator norm on P+(H).

The group G(S2) will be the elements in B(S2) that have an inverse in B(S2) and is an open
subset of B(S2). Inside B(S2) we have the two Lie subalgebras

U−(S2) = {b ∈ B(S2) | b = u−(b)}

and P+(H) and B(S2) is equal to their direct sum. To both Lie subalgebras there corresponds
a subgroup of G(S2), respectively

U−(S2) = {b ∈ B(S2) | b = Id +u−(b)}

and
P+(H) = {p ∈ P+(H) | p invertible , p−1 ∈ P+(H)}.

The characterization (4.3) implies that, if we define for each N ∈ N the map pN : U−(S2) →
U−(S2) by taking the first N + 1 rows of pN(u) equal to those of u and the remaining ones
equal to zero, then we have for all u ∈ U−(S2) that

lim
N→∞

pN(u) = u. (4.4)
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The product Ω(S2) = U−(S2)P+(H) is called the big cell w.r.t. these subgroups and the splitting
ω = u−(ω)p+(ω), with u−(ω) ∈ U−(S2) and p+(ω) ∈ P+(H), we call the (U−(S2), P+(H) )-
splitting of Ω(S2) and u−(ω) is the unipotent component of this decomposition. The second
decomposition of B(H) induces also a different splitting of B(S2) in two Lie subalgebras,
namely as P−(S2)⊕ U+(H), where

P−(S2) = {b ∈ B(S2) | b = p−(b)}.

To each of these two Lie subalgebras we can associate subgroups of G(S2). For P−(S2) that
will be

P−(S2) = {p ∈ P−(S2) | p invertible , p−1 ∈ P−(S2)}

and for U+(H) that is U+(H) = {p ∈ P+(H), p = Id +u+(p)}. Let D(H) denote the invertible
diagonal transformations in B(S2). Then P+(H) = D(H)U+(H) and P−(S2) = U−(S2)D(H)

and thus Ω(S2) also equals P−(S2)U+(H). We call the splitting ω = p−(ω)u+(ω), with
p−(ω) ∈ P−(S2) and u+(ω) ∈ U+(H), the (P−(S2), U+(H) )-splitting of Ω(S2) and p−(ω) is
called the parabolic component of this decomposition.

The next step will be the introduction of the group of commuting flows that is relevant
to both hierarchies. This requires some notations. For r > 0, let D0(r) be the closed disc
around the origin in the complex plane with radius r. As in [4], the space O(D0(r)) of
holomorphic functions on D0(r), consists of the direct limit of the O(U) with U an open
subset containing D0(r). On it we put the topology of uniform convergence and we consider
the closed subspace O0(D0(r)) of all f ∈ O(D0(r)) such that f(0) = 0. Now we can specify
the group Γ of commuting flows in GL(H) we will work with. The matrices corresponding to
the transformations in Γ are the image of the continuous map from O0(D0(1)) to [GL(H)]

built up from the substitution z = S in an f ∈ O0(D0(1)) and the exponential map. In
concrete terms, the group of matrices of Γ can be described as follows:

[Γ] =

{
[γ] = exp(

∞∑
i=1

tiS
i) |
∑∞

i=1 |ti|(1 + ε)i <∞
for some ε > 0

}
. (4.5)

Since the matrices in [Γ] are upper triangular, Γ is a subgroup of P+(H) and hence of G(S2).

Therefore Γ acts by left translations on G(S2). We need the following result w.r.t. this action:

P r o p o s i t i o n 4.1. The action of Γ on G(S2) satisfies: for each element g ∈ G(S2)

there exists γ ∈ Γ such that γ−1g belongs to the big cell Ω(S2) w.r.t. U−(S2) and P+(H).

The set O0(D0(1))(g) of all f ∈ O0(D0(1)) such that [γ] = exp(f(S)) satisfies this condition
is a non-zero open part of O0(D0(1)) and let Γ(g) correspond to its image in Γ.

P r o o f. Because of relation (4.4) it suffices to prove the statement for the elements of
G(S2) that decompose for some N ∈ N w.r.t the splitting H = HN ⊕H⊥N as

[g] = (gi,j) =

(
g(0, 0) g(0, 1)

0 g(1, 1)

)
, with g(0, 0) =

g0,0 . . . g0,N

... . . . ...
gN,0 . . . gN,N

 ∈ GLN+1(k)
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and g(1, 1) =



gN+1,N+1 . . . . . . gN,N+k . . .

0
. . . . . .

... . . .
... . . . . . . ... . . .

0 . . . 0 gN+k,N+k . . .
...

...
... . . . . . .

 invertible,

since elements of this form are dense in G(S2). The matrix of each element γ ∈ Γ we split
w.r.t. the same decomposition of H :

[γ] =

(
γN(0, 0) γ(0, 1)

0 γ(1, 1)

)
, with γN(0, 0) =


1 p1 . . . pN

0 1
. . . ...

... . . . . . . ...
0 . . . 0 1

 .

Then the matrix of the operator γ−1g has the form

[g][γ]−1 =

(
g(0, 0)γN(0, 0)−1 x

0 g(1, 1)γ(1, 1)−1

)
,

where x = −g(0, 0)γN(0, 0)−1γ(0, 1)γ(1, 1)−1 + g(0, 1)γ(1, 1)−1. Hence, if we find a vector
~tN = {t1, · · · , tN} such that g(0, 0)γN(0, 0)−1 = p0(~tN)u0(~tN) with p0(~tN) an invertible upper
triangular N + 1×N + 1 -matrix and u0(~tN) a unipotent lower triangular matrix of the same
size, then we have

[g][γ]−1 =

(
p0(~tN) x

0 g(1, 1)γ(1, 1)−1

)(
u0(~tN) 0

0 IdN

)
and this is the decomposition we are looking for. Clearly, in order that we have the desired
splitting of [g][γ]−1 the condition

g(0, 0)γ(0, 0)−1 = p0(~tN)u0(~tN)

for the vector ~tN is also necessary and by taking the inverse, one sees that it is equivalent
to finding a ~tN for γ(0, 0)h, where h = g(0, 0)−1 = (hi,j), such that γ(0, 0)h = u(~tN)p(~tN)

with p(~tN) an invertible upper triangular N + 1 × N + 1 -matrix and u(~tN) a unipotent
lower triangular one. We will show by induction on N that there are N nonzero polynomials
{q1, · · · , qN} such that for all ~tN in the complement of the union of the zero-sets of all the
{qi} one has the decomposition γN(0, 0)h = u(~tN)p(~tN). For N = 0, the matrix [g] is upper
triangular and the desired decomposition holds for all ~tN . Now we take N > 1, we split off
the first row of γN(0, 0) as follows:

γN(0, 0)h =

(
1 0 · · · · · · 0
0 γN−1(0, 0)

)(
1 p1 · · · pN
0 IdN

)h0,0 · · · h0,N

... . . . ...
hN,0 · · · hN,N

 (4.6)

and we focus for the moment on the product of the last two matrices. Since the first column of h
is nonzero, the polynomial qN := h0,0+

∑N
k=1 hk,0pk is nonzero. Now we work on the complement

of the zero-set of qN , so qN is invertible. Define for all i, 0 6 i 6 N, the polynomials
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ĥ0,i = h0,i +
∑N

k=1 hk,ipk. Note that ĥ0,0 = qN . Then the product of the last two matrices
in (4.6) is equal to


ĥ0,0 · · · · · · ĥ0,N

h1,0 h1,1 · · · h1,N

...
... . . . ...

hN,0 hN,1 · · · hN,N

 =


1 0 · · · · · · 0

h̃1,0 1 0 · · · · · ·
... 0 1 0 · · ·
...

... . . . 1 0

h̃N,0 0 · · · 0 1



ĥ0,0 · · · · · · ĥ0,N

0 ĥ1,1 · · · ĥ1,N

...
... . . . ...

0 ĥN,1 · · · ĥN,N

 ,

where each h̃k,0 = hk,0q
−1
N and all ĥik with i > 1 and k > 1 are defined by ĥik = hik− h̃i0ĥ0k.

Next we push the top row of the right matrix to the right
ĥ0,0 · · · · · · ĥ0,N

0 ĥ1,1 · · · ĥ1,N

...
... . . . ...

0 ĥN,1 · · · ĥN,N

 =


1 0 · · · 0

0 ĥ1,1 · · · ĥ1,N

...
... . . . ...

0 ĥN,1 · · · ĥN,N


(
ĥ0,0 · · · ĥ0,N

0 IdN

)
.

The matrix
(
ĥ0,0 · · · ĥ0,N

0 IdN

)
at the right has determinant ĥ0,0 = qN 6= 0 and will be part of

p(~tN). Next we move the matrix
(

1 0 · · · · · · 0
0 γN−1(0, 0)

)
in the product (4.6) to the right by using

(
1 0 · · · · · · 0
0 γN−1(0, 0)

)


1 0 · · · · · · 0

h̃1,0 1 0 · · · · · ·
... 0 1 0 · · ·
...

... . . . 1 0

h̃N,0 0 · · · 0 1

 =

(
1 0

~z IdN

)(
1 0 · · · · · · 0
0 γN−1(0, 0)

)
,

where ~z is the column of length N equal to γN−1(0, 0)~̃h with (~̃h)T = (h̃1,0, · · · , h̃N,0). The

matrix
(

1 0

~z IdN

)
will be part of u(~tN). Thus we have reduced the case to the product

(
1 0 · · · · · · 0
0 γN−1(0, 0)

)
1 0 · · · 0

0 ĥ1,1 · · · ĥ1,N

...
... . . . ...

0 ĥN,1 · · · ĥN,N

 ,

where the matrix at the right has determinant q−1
N 6= 0. The induction hypothesis gives us then

the nonzero polynomials {q1, · · · , qN} so that on the complement of all their zeros we have the
desired decomposition. This proves the claim in the proposition.

Now we will construct for each g ∈ G(S2) a solution of the k[S] -hierarchy and the strict
k[S] -hierarchy. The appropriate setting in both cases is the algebra

R(g) = C∞(O0(D0(1))(g), k), (4.7)
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with the derivations ∂i = ∂
∂ti
, i > 1. We start with the construction of the solutions of the

k[S] -hierarchy. Then we have by definition for all γ ∈ Γ(g) that

γ−1g = u−(g, γ)p+(g, γ)−1 (4.8)

and thus on the matrix level

[g][γ]−1 = [p+(g, γ)]−1[u−(g, γ)].

Note that all matrix coefficients of [u−(g, γ)] and [p+(g, γ)] belong to R(g), since the map
(u−,p+) → u−p

−1
+ is a diffeomorphism between U−(S2) × P+(H) and Ω(S2). The equation

(4.8) leads to the following identity

Ψ(g) := [u−(g, γ])[γ] = [p+(g, γ)][g]. (4.9)

Clearly Ψ(g) is an oscillating matrix in O(S) for which the products between the different
factors are real. To show that Ψ(g) is a wave matrix for the k[S] hierarchy it suffices to prove
the property in Proposition 3.1. Thereto we compute for all i > 1, the matrix ∂i(Ψ(g))Ψ(g)−1

using both the left and the right hand side of expression (4.9). We start with the right hand
side. Since for all i > 1, ∂([g]) = 0, we get

∂i(Ψ(g))Ψ(g)−1 = ∂i([p+(g, γ)])[p+(g, γ)]−1.

Now the matrix ∂i([p+(g, γ)])[p+(g, γ)]−1 is of the form
∑

r>0 drS
r with all dr ∈ DN(R). Next

we use the left hand side of (4.9) to compute ∂i(Ψ(g))Ψ(g)−1. This yields

∂i(Ψ(g))Ψ(g)−1 = ∂i([u−(g, γ)])[u−(g, γ)]−1 + [u−(g, γ)]∂i([γ])[γ]−1[u−(g, γ)]−1

= ∂i([u−(g, γ)])[u−(g, γ)]−1 + [u−(g, γ)]Si[u−(g, γ)]−1.

In this formula expression ∂i([u−(g, γ)])[u−(g, γ)]−1 possesses only negative diagonals and
[u−(g, γ)]Si[u−(g, γ)]−1 has the form

i∑
r=0

vrS
r +

∑
r<0

(ST )−rvr,

with all vr ∈ DN(R) and vi = Id . Combining this with the expression found for the right hand
side gives for all i > 1

∂i(Ψ(g)) = (
i∑

r=0

vrS
r)Ψ(g) = Bi,Ψ(g)Ψ(g).

Thus Ψ(g) satisfies the conditions in part (a) of Proposition 3.1 and hence it is a wave matrix of
the k[S] -hierarchy. In other words, Ψ(g) is a solution of the linearization of the k[S] -hierarchy.
The corresponding solution Lg of the k[S] -hierarchy is

Lg = [u−(g, γ)]S[u−(g, γ)]−1. (4.10)
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Note that, since the factor p+(g, γ)−1 plays no role at the construction of Lg, multiplying g

from the right with an element of P+(H) does not affect the solution Lg.
Secondly, we present for a g ∈ G(S2) the construction of the solution of the strict k[S] -

hierarchy. We proceed similarly, but now we use the (P−(S2), U+(H) )-splitting of Ω(S2). By
definition we have for all γ ∈ Γ(g) that

γ−1g = p−(g, γ)u+(g, γ)−1 (4.11)

and thus on the matrix level

[g][γ]−1 = [u+(g, γ)]−1[p−(g, γ)].

Note that all matrix coefficients of [p−(g, γ)] and [u+(g, γ)] belong to R(g), since the map
(p−,u+) → p−u

−1
+ is a diffeomorphism between P−(S2) × U+(H) and Ω(S2). The equation

(4.11) leads to the following identity

Φ(g) := [p−(g, γ][γ] = [u+(g, γ)][g]. (4.12)

Clearly Φ(g) is an oscillating matrix in O(S) for which the products between the different
factors are real. The idea is again to show that Φ(g) is a wave matrix for the strict k[S] -
hierarchy and that is done by proving property (b) in Proposition 3.1. Thereto we compute for
all i > 1, the matrix ∂i(Φ(g))Φ(g)−1 using both the left and the right hand side of expression
(4.12). We start with the right hand side. Again all the ∂i([g]) are zero, hence

∂i(Φ(g))Φ(g)−1 = ∂i([u+(g, γ)])[u+(g, γ)]−1.

The matrix ∂i([u+(g, γ)])[u+(g, γ)]−1 has only strict positive diagonals. Thus ∂i(Φ(g))Φ(g)−1

is equal to a matrix of the form
∑

r>1 urS
r with all ur ∈ DN(R). Next we use the left hand

side of (4.12) to compute ∂i(Φ(g))Φ(g)−1 once more. This yields

∂i(Φ(g))Φ(g)−1 = ∂i([p−(g, γ)])[p−(g, γ)]−1 + [p−(g, γ)]∂i([γ])[γ]−1[p−(g, γ)]−1

= ∂i([p−(g, γ)])[p−(g, γ)]−1 + [p−(g, γ)]Si[p−(g, γ)]−1.

In this formula expression ∂i([p−(g, γ)])[p−(g, γ)]−1 does not possess any strict positive diago-
nals and the matrix [p−(g, γ)]Si[p−(g, γ)]−1 has the form

i∑
r=0

vrS
r +

∑
r<0

(ST )−rvr,

with all vr ∈ DN(R) and vi ∈ DN(R)∗. Combining this with the first expression found yields
for all i > 1

∂i(Φ(g)) = (
i∑

r=1

vrS
r)Φ(g) = Ci,Φ(g)Φ(g).
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Thus Φ(g) satisfies the conditions in part (b) of Proposition 3.1 and hence is a wave matrix of
the strict k[S] -hierarchy. The corresponding solution Mg of the strict k[S] -hierarchy is

Mg = [p−(g, γ)]S[p−(g, γ)]−1. (4.13)

Also here the factor u+(g, γ)−1 plays no role at the construction of Mg. Hence, multiplying g

from the right with an element of U+(H) does not affect the solution Mg. For completeness
we resume the foregoing results in a

Theorem 4.1. Let g be an element in the group G(S2).

(a) For any γ in Γ(g) let u−(g, γ) be the unipotent component of γ−1g in the
(U−(S2), P+(H)) -splitting of Ω(S2). Let the oscillating matrix Ψ(g) ∈ O(S) be defined
by formula (4.9). Then Ψ(g) satisfies the linearization of the k[S] -hierarchy w.r.t. the
matrix Lg defined by formula (4.10). The solution Lg of the k[S] -hierarchy satisfies for
all g ∈ G(S2) and all p ∈ P+(H) that Lg = Lgp.

(b) For any γ in Γ(g) let p−(g, γ) be the parabolic component of γ−1g in the
(P−(S2), U+(H)) -splitting of Ω(S2) . Let the oscillating matrix Φ(g) ∈ O(S) be defined
by formula (4.12). Then Φ(g) satisfies the linearization of the k[S] -hierarchy w.r.t. the
matrix Mg defined by formula (4.13). The solution Mg of the k[S] -hierarchy satisfies
for all g ∈ G(S2) and all u ∈ U+(H) that Mg =Mgu.

R e m a r k 4.1. The manifolds G(S2)/P+(H) and G(S2)/U+(H) are the analogues for
the k[S] -hierarchy and its strict version of the Grassmann manifold Gr(H ) and its cover, the
flag variety F1, used in [5] resp. [6] to construct solutions of KP resp. strict KP.
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