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Abstract. A generalized version of the so-called chiral quark soliton model (CQSM) in
nuclear physics is introduced. The Hamiltonian of the generalized CQSM is given by a Dirac
type operator with a mass term being an operator-valued function. Some mathematically
rigorous results on the model are reported. The subjects included are: (i) supersymmetric
structure; (ii) spectral properties; (iii) symmetry reduction; (iv) a unitarily equivalent model.
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1 Introduction

The chiral quark soliton model (CQSM) [5] is a model describing a low-energy effective theory
of the quantum chromodynamics, which was developed in 1980’s (for physical aspects of the
model, see, e.g., [5] and references therein). The Hamiltonian of the CQSM is given by a Dirac
type operator with iso-spin, which differs from the usual Dirac type operator in that the mass
term is a matrix-valued function with an effect of an interaction between quarks and the pion
field. It is an interesting object from the purely operator-theoretical point of view too. But
there are few mathematically rigorous analyses for such Dirac type operators (e.g., [2], where
the problem on essential self-adjointness of a Dirac operator with a variable mass term given by
a scalar function is discussed).

In the previous paper [1] we studied some fundamental aspects of the CQSM in a mathemat-
ically rigorous way. In this paper we present a slightly general form of the CQSM, which we call
a generalized CQSM, and report that results similar to those in [1] hold on this model too, at
least, as far as some general aspects are concerned.

2 A Generalized CQSM

The Hilbert space of a Dirac particle with mass M > 0 and iso-spin 1/2 is taken to be
L2(R3; C4) ⊗ C2. For a generalization, we replace the iso-spin space C2 by an abitrary com-
plex Hilbert space K. Thus the Hilbert space H in which we work in the present paper is given
by

H := L2(R3; C4)⊗K.

We denote by B(K) the Banach space of all bounded linear operators on K with domain K.
Let T : R3 → B(K); R3 3 x = (x1, x2, x3) 7→ T (x) ∈ B(K) be a Borel measurable mapping
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such that, for all x ∈ R3, T (x) is a non-zero bounded self-adjoint operator on K such that
‖T‖∞ := sup

x∈R3

‖T (x)‖ <∞, where ‖T (x)‖ denotes the operator norm of T (x).

Example 1. In the original CQSM, K = C2 and T (x) = τ · n(x), where n : R3 → R3 is a
measurable vector field with |n(x)| = 1, a.e. (almost everywhere) x ∈ R3 and τ = (τ1, τ2, τ3) is
the set of the Pauli matrices.

We denote by {α1, α2, α3, β} the Dirac matrices, i.e., 4× 4-Hermitian matrices satisfying

{αj , αk} = 2δjk, {αj , β} = 0, β2 = 1, j, k = 1, 2, 3,

where {A,B} := AB +BA.
Let F : R3 → R be measurable, a.e., finite and

UF := (cosF )⊗ I + i(sinF )γ5 ⊗ T,

where I denotes identity and γ5 := −iα1α2α3. We set α := (α1, α2, α3) and ∇ := (D1, D2, D3)
with Dj being the generalized partial differential operator in the variable xj . Then the one
particle Hamiltonian of a generalized CQSM is defined by

H := −iα · ∇ ⊗ I +M(β ⊗ I)UF

acting in the Hilbert space H. For a linear operator L, we denote its domain by D(L). It
is well-known that −iα · ∇ is self-adjoint with D(−iα · ∇) = ∩3

j=1D(Dj). Since the operator
M(β ⊗ I)UF is bounded and self-adjoint, it follows that H is self-adjoint with domain D(H) =
∩3

j=1D(Dj ⊗ I) = H1(R3; C4 ⊗ K), the Sobolev space of order 1 consisting of C4 ⊗ K-valued
measurable functions on R3. In the context of the CQSM, the function F is called a profile
function. In what follows we sometimes omit the symbol of tensor product ⊗ in writing equations
down.

Example 2. Usually profile functions are assumed to be rotation invariant with boundary
conditions

F (0) = −π, lim
|x|→∞

F (x) = 0.

The following are concrete examples [6]:

(I) F (x) = −π exp(−|x|/R), R = 0.55× 10−15 m;

(II) F (x) = −π{a1 exp(−|x|/R1) + a2 exp(−|x|2/R2
2)},

a1 = 0.65, R1 = 0.58× 10−15 m, a2 = 0.35, R2 =
√

0.3× 10−15 m;

(III) F (x) = −π

(
1− |x|√

λ2 + |x|2

)
, λ =

√
0.4× 10−15 m.

We say that a self-adjoint operator A on H has chiral symmetry if γ5A ⊂ Aγ5.

Proposition 1. The Hamiltonian H has no chiral symmetry.

Proof. It is easy to check that, for all ψ ∈ D(H), γ5ψ ∈ D(H) and [γ5,H]ψ = 2Mγ5βUFψ.
Note that UF 6= 0. Hence, [γ5,H] 6= 0 on D(H). �

We note that, if F and T are differentiable on R3 with sup
x∈R3

|∂jF (x)|<∞ and sup
x∈R3

‖∂jT (x)‖<∞

(j = 1, 2, 3), then the square of H takes the form

H2 = (−∆ +M2)⊗ I − iMβα · (∇UF ) +M2 sin2 F ⊗ (T 2 − I).

This is a Schrödinger operator with an operator-valued potential.
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3 Operator matrix representation

For more detailed analyses of the model, it is convenient to work with a suitable representa-
tion of the Dirac matrices. Here we take the following representation of αj and β (the Weyl
representation):

αj =
(
σj 0
0 −σj

)
, β =

(
0 1
1 0

)
,

where σ1, σ2 and σ3 are the Pauli matrices. Let σ := (σ1, σ2, σ3) and

ΦF := (cosF )⊗ I + i(sinF )⊗ T.

Then we have the following operator matrix representation for H:

H =

(
−iσ · ∇ MΦ∗F
MΦF iσ · ∇

)
.

4 Supersymmetric aspects

Let ξ : R3 → B(K) be measurable such that, for all x ∈ R3, ξ(x) is a bounded self-adjoint
operator on K and ξ(x)2 = I, ∀ x ∈ R3. Let

Γ(x) := iγ5β ⊗ ξ(x), x ∈ R3.

We define an operator Γ̂ on H by

(Γ̂ψ)(x) := Γ(x)ψ(x), ψ ∈ H, a.e. x ∈ R3.

The following fact is easily proven:

Lemma 1. The operator Γ̂ is self-adjoint and unitary, i.e., it is a grading operator on H:
Γ̂∗ = Γ̂, Γ̂2 = I.

Theorem 1. Suppose that ξ is strongly differentiable with sup
x∈R3

‖∂jξ(x)‖ <∞ (j = 1, 2, 3) and

3∑
j=1

αj ⊗Djξ(x) = Mγ5β{ξ(x), T (x)} sinF (x). (1)

Then Γ̂D(H) ⊂ D(H) and {Γ̂,H}ψ = 0, ∀ ψ ∈ D(H).

Proof. For all ψ ∈ D0 := C∞0 (R3) ⊗alg (C4 ⊗ K) (⊗alg denotes algebraic tensor product), we
have

DjΓ̂ψ = iγ5β ⊗ (Djξ)ψ + iγ5β ⊗ ξ(Djψ). (2)

By a limiting argument using the fact that D0 is a core of Dj ⊗ I, we can show that, for
all ψ ∈ D(Dj), Γ̂ψ is in D(Dj) and (2) holds. Hence, for all ψ ∈ D(H), Γ̂ψ ∈ D(H) and (2)

holds. Thus we have for all ψ ∈ D(H) {Γ̂,H}ψ = C1ψ+C2ψ with C1 :=
3∑

j=1
{γ5β⊗ξ, αjDj} and

C2 := iM{γ5β⊗ξ, βUF }. Using the fact that {γ5, β} = 0 and [γ5, αj ] = 0 (j = 1, 2, 3), we obtain

C1ψ = −γ5β(
3∑

j=1
αjDjξ)ψ. Similarly direct computations yield (C2ψ)(x) = −M sinF (x) ⊗

{ξ(x), T (x)}ψ(x). Thus (1) implies {Γ̂,H}ψ = 0. �



4 A. Arai

Theorem 1 means that, under its assumption, H may be interpreted as a generator of a su-
persymmetry with respect to Γ̂.

Example 3. Consider the case K = C2. Let f, g : R3 → R be a continuously differentiable
function such that(

1 + C2
)
f(x)2 + g(x)2 = 1.

with a real constant C 6= 0 and n(x) := (f(x), Cf(x), g(x)). Then |n(x)| = 1, ∀ x ∈ R3. Let

ξ :=
C√

1 + C2
τ1 −

1√
1 + C2

τ2, T (x) := τ · n(x).

Then ξ2 = I and (ξ, T ) satisfies (1).

To state spectral properties of H, we recall some definitions. For a self-adjoint operator S,
we denote by σ(S) the spectrum of S. The point spectrum of S, i.e., the set of all the eigenvalues
of S is denoted σp(S). An isolated eigenvalue of S with finite multiplicity is called a discrete
eigenvalue of S. We denote by σd(S) the set of all the discrete eigenvalues of S. The set
σess(S) := σ(S) \ σd(S) is called the essential spectrum of S.

Theorem 2. Under the same assumption as in Theorem 1, the following holds:

(i) σ(H) is symmetric with respect to the origin of R, i.e., if λ ∈ σ(H), then −λ ∈ σ(H).

(ii) σ#(H) (# = p,d) is symmetric with respect to the origin of R with

dim ker(H − λ) = dim ker(H − (−λ))

for all λ ∈ σ#(H).

(iii) σess(H) is symmetric with respect to the origin of R.

Proof. Theorem 1 implies a unitary equivalence of H and −H (Γ̂HΓ̂−1 = −H). Thus the
desired results follow. �

Remark 1. Suppose that the assumption of Theorem 1 holds. In view of supersymmetry
breaking, it is interesting to compute dim kerH. This is related to the index problem: Let

H+ := ker(Γ̂− 1), H− := ker(Γ̂ + 1)

and

H± := H|H±.

Then H+ (resp. H−) is a densely defined closed linear operator from H+ (resp. H−) to H−
(resp. H+) with D(H+) = D(H) ∩H+ (resp. D(H−) = D(H) ∩D(H−)). Obviously

kerH = kerH+ ⊕ kerH−.

The analytical index of H+ is defined by

index(H+) := dim kerH+ − dim kerH∗
+,

provided that at least one of dim kerH+ and dim kerH∗
+ is finite. We conjecture that, for a

class of F and T , index(H+) = 0.
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5 The essential spectrum and finiteness
of the discrete spectrum of H

5.1 Structure of the spectrum of H

Theorem 3. Suppose that dimK <∞ and

lim
|x|→∞

F (x) = 0. (3)

Then

σess(H) = (−∞,−M ] ∪ [M,∞), (4)
σd(H) ⊂ (−M,M). (5)

Proof. We can rewrite H as H = H0 ⊗ I + V with H0 := −iα · ∇+Mβ and V := M(β ⊗ I)
(UF − I). We denote by χR (R > 0) the characteristic function of the set {x ∈ R3| |x| < R}. It
is well-known that, for all z ∈ C \R, (H0− z)−1χR is compact [7, Lemma 4.6]. Since K is finite
dimensional, it follows that (H0 ⊗ I − z)−1χR ⊗ I is compact. We have

‖V (x)‖ ≤M(| cosF (x)− 1|+ | sinF (x)|‖T‖∞) ≤M

(
|F (x)|2

2
+ |F (x)|‖T‖∞

)
.

Hence, by (3), we have lim
R→∞

sup
|x|>R

‖V (x)‖ = 0. Then, in the same way as in the method

described on [7, pp. 115–117], we can show that, for all z ∈ C \ R, (H − z)−1 − (H0 ⊗ I − z)−1

is compact. Hence, by a general theorem (e.g., [7, Theorem 4.5]), σess(H) = σess(H0⊗ I). Since
σess(H0) = (−∞,−M ]∪ [M,∞) ([7, Theorem 1.1]), we obtain (4). Relation (5) follows from (4)
and σd(H) = σ(H) \ σess(H). �

5.2 Bound for the number of discrete eigenvalues of H

Suppose that dimK < ∞ and (3) holds. Then, by Theorem 3, we can define the number of
discrete eigenvalues of H counting multiplicities:

NH := dim RanEH((−M,M)), (6)

where EH is the spectral measure of H.
To estimate an upper bound for NH , we introduce a hypothesis for F and T :

Hypothesis (A).

(i) T (x)2 = I, ∀ x ∈ R3 and T is strongly differentiable with
3∑

j=1
(DjT (x))2 being a multipli-

cation operator by a scalar function on R3.

(ii) F ∈ C1(R3).

(iii) sup
x∈R3

|DjF (x)| <∞, sup
x∈R3

‖DjT (x)‖ <∞ (j = 1, 2, 3).

Under this assumption, we can define

VF (x) :=

√√√√|∇F (x)|2 +
3∑

j=1

(DjT (x))2 sin2 F (x).
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Theorem 4. Let dimK <∞. Assume (3) and Hypothesis (A). Suppose that

CF :=
∫

R6

VF (x)VF (y)
|x− y|2

dxdy <∞.

Then NH is finite with

NH ≤ (dimK)M2CF

4π2
.

A basic idea for the proof of Theorem 4 is as follows. Let

L(F ) := H2 −M2.

Then we have

L(F ) = −∆ +M

(
0 W ∗

F

WF 0

)
with WF := iσ · ∇ΦF . Note that

W ∗
FWF = WFW

∗
F = V 2

F .

Let

L0(F ) := −∆−MVF .

For a self-adjoint operator S, we introduce a set

N−(S) := the number of negative eigenvalues of S counting multiplicities.

The following is a key lemma:

Lemma 2.

NH ≤ N−(L(F )) ≤ N−(L0(F )). (7)

Proof. For each λ ∈ σd(H) ∩ (−M,M), we have ker(H − λ) ⊂ ker(L(F ) − Eλ) with Eλ =
λ2 − M2 < 0. Hence the first inequality of (7) follows. The second inequality of (7) can
be proven in the same manner as in the proof of [1, Lemma 3.3], which uses the min-max
principle. �

On the other hand, one has

N−(L0(F )) ≤ (dimK)M2CF

4π2

(the Birman–Schwinger bound [4, Theorem XIII.10]). In this way we can prove Theorem 4.
As a direct consequence of Theorem 4, we have the following fact on the absence of discrete

eigenvalues of H:

Corollary 1. Assume (3) and Hypothesis (A). Let (dimK)M2CF < 4π2. Then σd(H) = ∅,
i.e., H has no discrete eigenvalues.
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6 Existence of discrete ground states

Let A be a self-adjoint operator on a Hilbert space and bounded from below. Then

E0(A) := inf σ(A)

is finite. We say that A has a ground state if E0(A) ∈ σp(A). In this case, a non-zero vector in
ker(A− E0(A)) is called a ground state of A. Also we say that A has a discrete ground state if
E0(A) ∈ σd(A).

Definition 1. Let

E+
0 (H) := inf [σ(H) ∩ [0,∞)] , E−0 (H) := sup [σ(H) ∩ (−∞, 0]] .

(i) If E+
0 (H) is an eigenvalue of H, then we say that H has a positive energy ground state

and we call a non-zero vector in ker(H − E+
0 (H)) a positive energy ground state of H.

(ii) If E−0 (H) is an eigenvalue of H, then we say that H has a negative energy ground state
and we call a non-zero vector in ker(H − E−0 (H)) a negative energy ground state of H.

(iii) If E+
0 (H) (resp. E−0 (H)) is a discrete eigenvalue of H, then we say that H has a discrete

positive (resp. negative) energy ground state.

Remark 2. If the spectrum of H is symmetric with respect to the origin of R as in Theorem 2,
then E+

0 (H) = −E−0 (H), and H has a positive energy ground state if and only if it has a negative
energy ground state.

Assume Hypothesis (A). Then the operators

S±(F ) := −∆±M(D3 cosF )

are self-adjoint with D(S±(F )) = D(∆) and bounded from below.
As for existence of discrete ground states of the Dirac operator H, we have the following

theorem:

Theorem 5. Let dimK < ∞. Assume Hypothesis (A) and (3). Suppose that E0(S+(F )) < 0
or E0(S−(F )) < 0. Then H has a discrete positive energy ground state or a discrete negative
ground state.

Proof. We describe only an outline of proof. We have

σess(L(F )) = [0,∞), σd(L(F )) ⊂ [−M2, 0).

Hence, if L(F ) has a discrete eigenvalue, then H has a discrete eigenvalue in (−M,M). By the
min-max principle, we need to find a unit vector Ψ such that 〈Ψ, L(F )Ψ〉 < 0. Indeed, for each
f ∈ D(∆), we can find vectors Ψ±

f ∈ D(L(F )), such that 〈Ψ±
f , L(F )Ψ±

f 〉 = 〈f, S±f〉. By the
present assumption, there exists a non-zero vector f0 ∈ D(∆) such that 〈f0, S+(F )f0〉 < 0 or
〈f0, S−(F )f0〉 < 0. Thus the desired results follow. �

To find a class of F such that E0(S+(F )) < 0 or E0(S−(F )) < 0, we proceed as follows. For
a constant ε > 0 and a function f on Rd, we define a function fε on Rd by

fε(x) := f(εx), x ∈ Rd.

The following are key Lemmas.
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Lemma 3. Let V : Rd → R be in L2
loc(Rd) and

Sε := −∆ + Vε.

Suppose that:

(i) For all ε > 0, Sε is self-adjoint, bounded below and σess(Sε) ⊂ [0,∞).

(ii) There exists a nonempty open set Ω ⊂ {x ∈ Rd|V (x) < 0}.

Then then there exists a constant ε0 > 0 such that, for all ε ∈ (0, ε0), Sε has a discrete ground
state.

Proof. A basic idea for the proof of this lemma is to use the min-max principle (see [1, Lem-
ma 4.3]). �

Lemma 4. V : Rd → R be continuous with V (x) → 0(|x| → ∞). Suppose that {x ∈ Rd|V (x) <
0} 6= ∅. Then:

(i) −∆ + V is self-adjoint and bounded below.

(ii) σess(−∆ + V ) = [0,∞).

(iii) Sε has a discrete ground state for all ε ∈ (0, ε0) with some ε0 > 0.

Proof. The facts (i) and (ii) follow from the standard theory of Schrödinger operators. Part (iii) fol-
low from a simple application of Lemma 3 (for more details, see the proof of [1, Lemma 4.4]). �

We now consider a one-parameter family of Dirac operators:

Hε := (−i)α · ∇+
1
ε
M(β ⊗ I)UFε .

Theorem 6. Let dimK < ∞. Assume Hypothesis (A) and (3). Suppose that D3 cosF is not
identically zero. Then there exists a constant ε0 > 0 such that, for all ε ∈ (0, ε0), Hε has
a discrete positive energy ground state or a discrete negative ground state.

Proof. This follows from Theorem 5 and Lemma 4 (for more details, see the proof of [1, Theo-
rem 4.5]). �

7 Symmetry reduction of H

Let T1, T2 and T3 be bounded self-adjoint operators on K satisfying

T 2
j = I, j = 1, 2, 3,

T1T2 = iT3, T2T3 = iT1, T3T1 = iT2.

Then it is easy to see that the anticommutation relations

{Tj , Tk} = 2δjkI, j, k = 1, 2, 3

hold. Since each Tj is a unitary self-adjoint operator with Tj 6= ±I, it follows that

σ(Tj) = σp(Tj) = {±1}.

We set T = (T1, T2, T3).
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In this section we consider the case where T (x) is of the following form:

T (x) = n(x) · T ,

where n(x) is the vector field in Example 1. We use the cylindrical coordinates for points
x = (x1, x2, x3) ∈ R3:

x1 = r cos θ, x2 = r sin θ, x3 = z,

where θ ∈ [0, 2π), r > 0. We assume the following:

Hypothesis (B). There exists a continuously differentiable function G : (0,∞)× R → R such
that

(i) F (x) = G(r, z), x ∈ R3 \ {0};
(ii) lim

r+|z|→∞
G(r, z) = 0;

(iii) sup
r>0,z∈R

(|∂G(r, z)/∂r|+ |∂G(r, z)/∂z|) <∞.

We take the vector field n : R3 → R3 to be of the form

n(x) :=
(
sinΘ(r, z) cos(mθ), sinΘ(r, z) sin(mθ), cos Θ(r, z)

)
,

where Θ : (0,∞)× R → R is continuous and m is a natural number.
Let L3 be the third component of the angular momentum acting in L2(R3) and

K3 := L3 ⊗ I +
1
2
Σ3 ⊗ I +

m

2
I ⊗ T3 (8)

with Σ3 := σ3 ⊕ σ3. It is easy to see that K3 is a self-adjoint operator acting in H.

Lemma 5. Assume that

Θ(εr, εz) = Θ(r, z), (r, z) ∈ (0,∞)× R, ε > 0. (9)

Then, for all t ∈ R and ε > 0, the operator equality

eitK3Hεe
−itK3 = Hε (10)

holds.

Proof. Similar to the proof of [1, Lemma 5.2]. We remark that, in the calculation of

eitK3T (x)e−itK3 =
3∑

j=1

eitL3nj(x)e−itL3eitmT3Tje
−itmT3 ,

the following formulas are used:

(T1 cosmt− T2 sinmt)eitmT3 = T1, (T1 sinmt+ T2 cosmt)eitmT3 = T2. �

Definition 2. We say that two self-adjoint operators on a Hilbert space strongly commute if
their spectral measures commute.

Lemma 6. Assume (9). Then, for all ε > 0, Hε and K3 strongly commute.

Proof. By (10) and the functional calculus, we have for all s, t ∈ R eitK3eisHεe−itK3 = eisHε ,
which is equivalent to eitK3eisHε = eisHεeitK3 , s, t ∈ R. By a general theorem (e.g., [3, Theo-
rem VIII.13]), this implies the strong commutativity of K3 and Hε. �
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Lemma 6 implies that Hε is reduced by eigenspaces of K3. Note that

σ(K3) = σp(K3) =
{
`+

s

2
+
mt

2

∣∣∣∣ ` ∈ Z, s = ±1, t = ±1
}
.

The eigenspace of K3 with eigenvalue `+ (s/2) + (mt/2) is given by

M`,s,t := M` ⊗ Cs ⊗ Tt

with Cs := ker(Σ3 − s) and Tt := ker(T3 − t). Then H has the orthogonal decomposition

H = ⊕`∈Z,s,t∈{±1}M`,s,t.

Thus we have:

Lemma 7. Assume (9). Then, for all ε > 0, Hε is reduced by each M`,s,t.

We denote by Hε(`, s, t) by the reduced part of Hε to M`,s,t and set

H(`, s, t) := H1(`, s, t).

For s = ±1 and ` ∈ Z, we define

Ls(G, `) := − ∂2

∂r2
− 1
r

∂

∂r
+
`2

r2
+

∂2

∂z2
+ sMDz cosG

acting in L2((0,∞)× R, rdrdz) with domain

D(Ls(G, `)) := C∞0 ((0,∞)× R)

and set

E0(Ls(G, `)) := inf
f∈C∞0 ((0,∞)×R),‖f‖L2((0,∞)×R,rdrdz)=1

〈f, Ls(G, `)f〉.

The following theorem is concerned with the existence of discrete ground states of H(`, s, t).

Theorem 7. Assume Hypothesis (B) and (9). Fix an ` ∈ Z arbitrarily, s = ±1 and t = ±1.
Suppose that dim Tt <∞ and

E0(Ls(G, `)) < 0.

Then H(`, s, t) has a discrete positive energy ground state or a discrete negative ground state.

Proof. Similar to the proof of Theorem 5 (for more details, see the proof of [1, Theorem 5.5]). �

Theorem 8. Assume Hypothesis (B) and (9). Suppose that dim Tt < ∞ and that Dz cosG is
not identically zero. Then, for each ` ∈ Z, there exists a constant ε` > 0 such that, for all
ε ∈ (0, ε`), each Hε(`, s, t) has a discrete positive energy ground state or a discrete negative
ground state.

Proof. Similar to the proof of Theorem 6 (for more details, see the proof of [1, Theorem 5.6]). �

Theorem 8 immediately yields the following result:

Corollary 2. Assume Hypothesis (B) and (9). Suppose that dim Tt < ∞ and that Dz cosG is
not identically zero. Let ε` be as in Theorem 8 and, for each n ∈ N and k > n (k, n ∈ Z),
νk,n := min

n+1≤`≤k
ε`. Then, for each ε ∈ (0, νk,n), Hε has at least (k − n) discrete eigenvalues

counting multiplicities.

Proof. Note that σp(Hε) = ∪`∈Z,s,t=±1σp(Hε(`, s, t)). �
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8 A unitary transformation

We go back again to the generalized CQSM defined in Section 2. It is easy to see that the
operator

XF :=
1 + γ5

2
exp

(
iF ⊗ T

2

)
+

1− γ5

2
exp

(
−iF ⊗ T

2

)
is unitary. Under Hypothesis (A), we can define the following operator-valued functions:

Bj(x) :=
1
2
Dj [F (x)T (x)], x ∈ R3, j = 1, 2, 3.

We set

B := (B1, B2, B3)

and introduce

H(B) := (−i)α · ∇+Mβ − σ ·B

acting inH. Since σ·B is a bounded self-adjoint operator, H(B) is self-adjoint withD(H(B)) =
∩3

j=1D(Dj ⊗ I).

Proposition 2. Assume Hypothesis (A) and that T (x) is independent of x. Then

XFHX
−1
F = H(B).

Proof. Similar to the proof of [1, Proposition 6.1]. �

Using this proposition, we can prove the following theorem:

Theorem 9. Let dimK < ∞. Assume Hypothesis (A) and that T (x) is independent of x.
Suppose that

lim
|x|→∞

|∇F (x)| = 0.

Then

σess(H) = (−∞,−M ] ∪ [M,∞). (11)

Proof. By Proposition 2, we have σess(H) = σess(H(B)). By the present assumption, Bj(x) =
DjF (x)T (0)/2. Hence

sup
|x|>R

‖σ ·B(x)‖ ≤
3∑

j=1

(‖T (0)‖/2) sup
|x|>R

|DjF (x)| → 0 (R→∞).

Therefore, as in the proof of Theorem 3, we conclude that σess(H(B)) = (−∞,−M ] ∪ [M,∞].
Thus (11) follows. �
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