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Asymptotics of eigenvalues
and eigenvectors of Toeplitz matrices

A. Böttcher, J.M. Bogoya, S. M. Grudsky and E.A. Maximenko

. Abstract. Analysis of the asymptotic behaviour of the spectral character-
istics of Toeplitz matrices as the dimension of the matrix tends to infinity
has a history of over 100 years. For instance, quite a number of versions
of Szegő’s theorem on the asymptotic behaviour of eigenvalues and of the
so-called strong Szegő theorem on the asymptotic behaviour of the deter-
minants of Toeplitz matrices are known. Starting in the 1950s, the asymp-
totics of the maximum and minimum eigenvalues were actively investigated.
However, investigation of the individual asymptotics of all the eigenvalues
and eigenvectors of Toeplitz matrices started only quite recently: the first
papers on this subject were published in 2009–2010. A survey of this new
field is presented here.

Bibliography: 55 titles.
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§ 1. Introduction

Let a : T → C be a Lebesgue integrable function on the unit circle T and let
Tn(a) := (aj−k)n−1

j,k=0 denote the n× n Toeplitz matrix formed by the Fourier coef-
ficients of a:

aℓ =
1
2π

∫ 2π

0

a(eiϕ)e−iℓϕ dϕ.

Then a is called the symbol of the sequence of matrices {Tn(a)}∞n=1.
The behaviour of various spectral characteristics of Toeplitz matrices (eigenval-

ues and singular values, eigenvectors, determinants, condition numbers and so on)
has been an object of active investigation for a century, starting with Szegő’s
paper [1] (see also the books [2]–[6] and the references there). First and foremost
note the numerous versions of Szegő’s theorem on the asymptotic distribution of
the eigenvalues and the Avram-Parter-type theorems on the asymptotic behaviour
of the singular values (see [7]–[12]). There is extensive literature on the asymptotic
behaviour of the determinants of Toeplitz matrices (see the monographs [4]–[6] and
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the papers [13]–[19] and the references there). The asymptotics of the maximum
and minimum eigenvalues has also been a focus of research (see [20]–[25]). The
shape of the limit set of the eigenvalues and its stability have been investigated
(see [26]–[28] and [15]). Note that the latter papers (by contrast with most of
the papers cited before them) concern the more complicated case of essentially
complex-valued symbols, which has not yet been analyzed in full generality.

This considerable interest in the asymptotic behaviour of the spectral charac-
teristics of large Toeplitz matrices was motivated to a significant extent by many
important applications: stochastic processes and time series analysis (see [2]); sig-
nal processing [29]; the numerical solution of differential and integral equations [30];
image processing [31]; quantum mechanics [32]. We point out the survey paper [19],
which discusses the influence of the Ising model in statistical mechanics on the
development of the asymptotic theory of the determinants of Toeplitz matrices.

Despite the considerable interest in this field that many authors have displayed,
the individual asymptotic behaviour of all eigenvalues and eigenvectors was hardly
investigated before 2008. In this connection we can only mention the well-known
case of tridiagonal Toeplitz matrices (for instance, see [2] and [5]) and the case
of linearly growing matrix elements considered recently in [33], where the eigen-
values and eigenvectors are calculated explicitly. On the other hand the impor-
tance of this problem is beyond doubt. For example, many papers are devoted
to numerical methods for finding the spectrum of Toeplitz matrices of large size
(see [34], [35] and the references there). For dimensions of order 103–104 this prob-
lem can be solved effectively using modern hardware and the algorithms described in
the above papers. However, in statistical physics and some other applied problems
we encounter dimensions of order 108–1012, when no alternative to the asymptotic
method exists. In addition, asymptotic formulae give more precise information on
the local structure of the set of eigenvalues, the distances between them, accumu-
lation points, their dependence on physical parameters and so on.

In our opinion, the main difficulties arising in the implementation of the asymp-
totic method are as follows. First, the distances between successive eigenvalues are
small (very small when we are in a neighbourhood of an accumulation point!) and
our asymptotic formulae must be able to ‘separate’ them. Furthermore, in addi-
tion to n (the dimension of the matrix) being large, the problem involves another
parameter, the index j of the eigenvalue. So the asymptotic expansions with respect
to n, as n goes to infinity, which we construct must hold uniformly in j, 1 6 j 6 n.
Finally, we stress that the determinants that appear in the eigenvalue problem in
a natural way are related to one of the most complicated cases, when the symbol
of the Toeplitz matrix has zeros on the unit circle.

In the papers [36]–[38], published in 2009–2010, asymptotic representations were
constructed in the case of real-valued polynomial symbols (in other words, for Her-
mitian Toeplitz matrices with a finite number of nontrivial diagonals) that satisfy
the so-called SL (simple loop) condition. This means that the real-valued symbol
has precisely one minimum and one maximum on the unit circle (the precise defini-
tion is expressed by conditions (i) and (ii) in § 2). The SL condition ensures a certain
regularity in the arrangement of the eigenvalues; for instance, there are no multiple
eigenvalues. In [36] and [37], based on Widom’s well-known formula for the deter-
minant of a Toeplitz matrix with polynomial symbol (see [21] and also [5], § 2.4)
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we found an equation for the eigenvalues, with an exponentially small remainder
term, and performed an asymptotic analysis of this equation. In [38] we also used
explicit formulae from [39] to calculate eigenvectors of matrices with polynomial
symbols, and on this basis we wrote down asymptotic formulae with a remainder
term which is exponentially small in n.

In the paper [40] published in 2012 the authors considered the case of infinitely
smooth symbols also satisfying the SL condition. Using the asymptotic formula
for determinants with Fisher-Hartwig singularities obtained in [18] the authors
obtained the same nonlinear equation as in [36] and [37], but with remainder of
the form o(1). Next they deduced two-sided estimates for the distance between
arbitrary pairs of successive eigenvalues. Before the statement of this theorem the
authors mentioned that the smoothness conditions imposed on the symbol can be
relaxed.

In [41] and [42] we considered an SL-symbol whose fourth derivative exists and
has a certain regularity. We used a method distinct from [37] and [40]. It is based
on a precise equation for the eigenvalues, which we derived, and on an asymptotic
analysis of it. This equation is given in terms of the inverse matrix of a certain
Toeplitz matrix of dimension n + 2 with positive symbol equal to the ratio of the
difference a(t)−λ (where λ is the spectral parameter) and a second-order polynomial
with the same zeros as this difference. We also point out [43], where the symbol is
only assumed to have a first derivative and to satisfy certain additional conditions
near the minimum and maximum points.

In [44] and [45] we abandoned the selfadjoint case and investigated Toeplitz
matrices with complex-valued symbols. These symbols have a special feature: the
corresponding function takes the unit circle to a curve without interior. In other
words, the unit circle covers its image with multiplicity two by going in the ‘direct’
and ‘reverse’ direction along it. It is well known that then the limit set of the
sequence of spectra coincides with this image curve, so for large n the eigenvalues
lie close to this curve. Again, as in [36] and [37], in these papers we used known
explicit formulae for determinants and inverse matrices because our symbols were
polynomials. The resulting equation for the eigenvalues has the same structure as in
the real-valued case; however, it must be considered in the complex domain, rather
than on an interval of the real line, which brings in quite a number of significant
technical difficulties.

In 2009–2010 Kadanoff and his collaborators published the papers [46] and [47],
where they considered a symbol, with power-like singularities, in the Fisher-Hartwig
class. They presented formulae for the eigenvalues and eigenvectors. These for-
mulae were deduced using heuristic arguments and justified by numerical experi-
ment. In the same period of time, in 2008–2010 we considered a certain subclass
of Fisher-Hartwig symbols. In this way, in [48]–[50] we refined and justified the
formulae in [46] and [47] rigorously for symbols in the intersection of the classes
under consideration.

We also point out the paper [51] close to this field. It looks at the asymptotic
behaviour of the eigenvalues and eigenvectors of the Wiener-Hopf integral operator
on a finite interval as the length of the interval tends to infinity, and it deals with
the case of a symmetric rational (generally speaking, complex-valued) symbol. This
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problem is related to the same problem for Toeplitz matrices; however, its pecu-
liarity consists in there being an infinite number of eigenvalues and eigenfunctions
of the operator for an interval of any length.

Finally, we mention [52] and [53], where we go over from convergence in the sense
of distributions (Szegő’s theorem) to uniform convergence of the quantile function.
For rather wide classes of symbols, approximation of eigenvalues can be expressed
in terms of this function.

In § 2 we state results for SL-symbols based on [43] and [42]. Toeplitz matrices
with symmetric symbols are the subject of § 3, where we present the main results
of [44] and [45]. In § 4 we look at Fisher-Hartwig symbols and discuss results
from [48] and [50]. In § 5 we investigate Wiener-Hopf operators on a finite interval
(see [51]).

§ 2. SL-symbols

2.1. Eigenvalues. Assume that α > 0 and let Wα denote the weighted Wiener
algebra of functions a : T → C with representations

a(t) =
∞∑

j=−∞
ajt

j , t ∈ T,

where the Fourier coefficients satisfy

∥a∥α :=
∞∑

j=−∞
|aj |(1 + |j|)α <∞.

Along with a ∈Wα we look at the function g : [0, 2π] → R given by g(σ) := a(eiσ).
We define the class SLα as the set of symbols a in Wα such that
(i) a is real-valued;
(ii) the range of g is an interval [0, µ] where µ > 0; g(0) = g(2π) = 0, g′′(0) =

g′′(2π) > 0, and there exists a point ϕ0 ∈ (0, 2π) such that g(ϕ0) = µ,
g′(σ) > 0 for σ ∈ (0, ϕ0), g′(σ) < 0 for σ ∈ (ϕ0, 2π) and g′′(ϕ0) < 0.

Note that (i) is equivalent to all the matrices Tn(a), n ∈ Z+, being Hermitian
(selfadjoint). If a ∈ Wα, then g ∈ C⌊α⌋[0, 2π], where ⌊α⌋ is the integer part
of α. Thus, if a ∈ SLα with α > 1 then, in particular, g belongs to C1[0, 2π].
Furthermore, in (ii) we assume that g has second derivatives at the points σ = 0,
ϕ0 and 2π.

We will say that the symbol a belongs to the class MSLα with α > 1 if a ∈ SLα

and the following additional condition is satisfied:
(iii) there exist functions q1, q2 ∈Wα such that

a(t) = (t− 1)q1(t) and a(t)− a(eiϕ0) = (t− eiϕ0)q2(t). (2.1)

By Lemma 3.1 in [41], if a ∈ SLα, then the functions q1 and q2 defined by (2.1)
must belong to Wα−1. In the definition of the class MSLα we impose the stronger
condition (iii), that is, we assume that the symbol has additional smoothness at the
points where it takes the minimum and maximum values. Using the same lemma
we can show that each a ∈ MSLα has the representations

a(t) = (t− 1)2q3(t) and a(t)− a(eiϕ0) = (t− eiϕ0)2q4(t), (2.2)
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with q3, q4 ∈Wα−1.
Let a ∈ MSLα, α > 1. For each λ ∈ [0, µ] there exists precisely one point ϕ1(λ) on

the interval [0, ϕ0] such that g(ϕ1(λ)) = λ and precisely one point ϕ2(λ) ∈ [ϕ0, 2π]
such that g(ϕ2(λ)) = λ. In other words ϕ1 and ϕ2 are the inverse functions of g
restricted to [0, ϕ0] and [ϕ0, 2π], respectively. For each λ ∈ [0, µ], g takes values
not exceeding λ on the intervals [0, ϕ1(λ)] and [ϕ2(λ), 2π]. Let ϕ(λ) denote the
arithmetic mean of the lengths of these two intervals:

ϕ(λ) :=
1
2
(ϕ1(λ)− ϕ2(λ)) + π =

1
2

∣∣{σ ∈ [0, 2π] : g(σ) 6 λ}
∣∣,

where | · | denotes Lebesgue measure on [0, 2π]. Note that ϕ : [0, µ] → [0, π] is
continuous and bijective and let ψ : [0, π] → [0, µ] denote its inverse function. Up to
a linear change of the argument, ϕ and ψ are the distribution function and the
quantile function of the ‘random variable’ a on the probability space [0, 2π] with
normalized Lebesgue measure. Set

σ1(s) = ϕ1(ψ(s)) = ϕ1(λ) and σ2(s) = ϕ2(ψ(s)) = ϕ2(λ).

Note that the derivatives of ϕ1 and ϕ2 are unbounded in a neighbourhood of 0
and µ, whereas the functions σ1 and σ2 have continuous first derivatives on the
whole of [0, π]. In addition, it is easy to see that

g(σ1(s)) = g(σ2(s)) = ψ(s) = λ.

For each s ∈ [0, π] the function a − ψ(s) has two zeros, t = eiσ1(s) and t = eiσ2(s).
We can define a positive function b in terms of these:

b(t, s) :=
(a(t)− ψ(s))eis

(t− eiσ1(s))(t−1 − e−iσ2(s))
, t ∈ T, s ∈ [0, π]. (2.3)

Let η : [0, π] → R be defined by

η(s) :=
1
4π

∫ 2π

0

log b(eiσ, s)

tan σ−σ2(s)
2

dσ − 1
4π

∫ 2π

0

log b(eiσ, s)

tan σ−σ1(s)
2

dσ. (2.4)

The singular integrals above are taken in the sense of the Cauchy principal value.
Let λ1,n, . . . , λn,n denote the eigenvalues of the matrix Tn(a). We can now state

the main results in [43].

Theorem 2.1. Let α > 1 and a ∈ MSLα . Then for each n > 1:
(i) all eigenvalues of Tn(a) are distinct, so that λ1,n < · · · < λn,n ;
(ii) the quantities sj,n := ϕ(λj,n), j = 1, . . . , n, satisfy the equations

(n+ 1)sj,n + η(sj,n) = πj + ∆(1)
j,n, (2.5)

where ∆(1)
j,n = o(1/nα−1) uniformly in j as n→∞;

(iii) for sufficiently large n, equation (2.5) has a unique solution sj,n ∈ [0, π] for
each j = 1, . . . , n.
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Set dj,n = πj/(n+ 1).

Theorem 2.2. If all the assumptions of Theorem 2.1 are fulfilled, then

sj,n = dj,n +
⌊α⌋∑
k=1

pk(dj,n)
(n+ 1)k

+ ∆(2)
j,n,

where ∆(2)
j,n = o(1/nα) uniformly in j as n→∞. The coefficients pk can be calcu-

lated explicitly; in particular,

p1(s) = −η(s) and p2(s) = η(s)η′(s).

Theorem 2.3. If all the assumptions of Theorem 2.1 are fulfilled, then

λj,n = ψ(dj,n) +
⌊α⌋∑
k=1

rk(dj,n)
(n+ 1)k

+ ∆(3)
j,n,

where ∆(3)
j,n = o

(
1

nα (dj,n(π − dj,n))α−1
)

for 1 6 α < 2 and o
(

1
nα dj,n(π − dj,n)

)
for

α > 2 uniformly in j as n → ∞. The coefficients rk can be calculated explicitly;
in particular,

r1(s) = −ψ′(s)η(s) and r2(s) =
1
2
ψ′′(s)η2(s) + ψ′(s)η(s)η′(s).

Remark 2.1. Let a ∈ MSLα and α ∈ [1, 2). Then the eigenvalues (for which
ϵ 6 dj,n 6 π − ϵ) have the following asymptotics:

λj,n = ψ(dj,n)− ψ′(dj,n)η(dj,n)
n+ 1

+ o

(
1
nα

)
.

This means that the distance between two successive eigenvalues has the two-sided
estimate

c

n+ 1
< λj+1,n − λj,n <

C

n+ 1
, (2.6)

where the constants c and C are independent of j and n. On the other hand the
difference λj,n−ψ(dj,n) also has order O(1/n). In this connection an approximation

λj,n ≈ ψ(dj,n) (2.7)

is often not sufficient for computations because the approximate formula (2.7) does
not ‘separate’ eigenvalues: a point ψ(dj,n) need not lie closest to the jth eigenvalue,
but perhaps to some other eigenvalue, for instance, λj+2,n.

The assertion of Theorem 2.3 holds for all eigenvalues of Tn(a). However, bearing
in mind the behaviour of ψ(s) and η(s) close to the endpoints of [0, π] (see Lemmas
4.2 and 4.6 in [43]) we can refine the asymptotic formulae for the extreme eigenvalues
(cf. Corollary 2.5 in [41]).
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Theorem 2.4. Let a ∈ MSLα for some α > 2.
(i) If j/(n+ 1) → 0, then

λj,n = g(0) +
c1j

2

(n+ 1)2
+

c2j
2

(n+ 1)3
+ ∆(4)

j,n, (2.8)

where c1 = π2g′′(0)/2, c2 = −π2g′′(0)η′(0) and ∆(4)
j,n = o((j/n)3) as n→∞.

(ii) If j/(n+ 1) → 1, then

λj,n = g(π) +
c3(n+ 1− j)2

(n+ 1)2
+
c4(n+ 1− j)2

(n+ 1)3
+ ∆(5)

j,n, (2.9)

where c3 = π2g′′(φ0)/2, c4 = −π2g′′(φ0)η′(π) and ∆(5)
j,n = o(((n+ 1− j)/n)3)

as n→∞.

Theorem 2.1 and, as a consequence, also Theorems 2.2 and 2.3 are based on
the following result, which provides an exact equation for the eigenvalues. We
introduce some further notation. As functions of the form (2.3) are positive, the
operator Tn(b) is invertible for each n > 1. Let Θk : T× [0, π] → C be defined by

Θk(t, s) := [T−1
k (b( · , s))χ0](t).

Here the Toeplitz matrix and the inverse matrix are realized as operators in the
space

ℓ
(n)
2 :=

{
p(t) : p(t) =

n−1∑
j=0

pkt
k, t ∈ T

}
,

of polynomials of degree at most n − 1 and the function χ0 is identically equal to
one: χ0(t) ≡ 1. In other words, Θk(t, s) is a polynomial of degree at most n − 1
constructed from the entries in the zeroth column of T−1

k (b( · , s)). For brevity we
set zk(s) = eiσk(s), k = 1, 2, so that we take zm

k (s) to be treated as eimσk(s).

Theorem 2.5. Assume that α > 1, and let a ∈ MSLα and n > 1. Then λ = ψ(s)
is an eigenvalue of the operator Tn(a) if and only if

zn+1
2 (s)Θn+2(z1(s), s)Θn+2(z2(s), s) = zn+1

1 (s)Θn+2(z2(s), s)Θn+2(z1(s), s).
(2.10)

Note that (2.10) involves the action of the inverse operator T−1
n+2(b( · , s)), so it is

rather difficult to analyze directly. However, it can be analyzed asymptotically as
n→∞, when we replace T−1

n+2(b( · , s)) by the function Θ(t, s) :=[T−1(b( · , s))χ0](t),
where T−1(b) is the inverse of the (infinite) Toeplitz operator. As Θ(t, s) is easy to
calculate in terms of the Wiener-Hopf factorization of b, we obtain equation (2.5)
in this way.

We conclude this subsection by observing that the formulae in Theorem 2.3 have
proved to be numerically highly efficient and yield nice results for n = 40, . . . , 100
(see [37], [41] and [43]).
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2.2. Eigenvectors. The arguments resulting in the exact equation (2.10) enable
us to deduce exact formulae for the components of the eigenvectors too. The results
presented in this subsection were published in [42]. Keeping the notation used
in § 2.1, for brevity we write

θ(t) := Θ(t, sj,n) = [T−1
n+2(b( · , sj,n))χ0](t),

where we recall that sj,n is related to the jth eigenvalue of the matrix Tn(a)
by λj,n = ψ(sj,n).

Theorem 2.6. Assume that α > 1 and let a ∈ MSLα , n > 1 and 1 6 j 6 n. Then
the vector

X(j,n) = M (j,n) + L(j,n) +R(j,n) (2.11)

whose pth component, p = 0, 1, . . . , n− 1, is given by

M (j,n)
p := z

(n−1)/2−p
1 |θ(z1)|+ (−1)n−jz

(n−1)/2−p
2 |θ(z2)|,

L(j,n)
p := −z

(n+1)/2
1 θ(z1)
2πi|θ(z1)|

∫
T

(
θ(t)− θ(z1)
t− z1

− θ(t)− θ(z2)
t− z2

)
dt

tp+1
,

R(j,n)
p := L

(j,n)
n−p−1,

is an eigenvector corresponding to the eigenvalue λj,n . In addition, M (j,n) is con-

jugation symmetric: M (j,n)
p = M

(j,n)
n−p−1 .

That is, the eigenvector X(j,n) can be represented as a sum of three vectors:
the leading term M (j,n), the term L(j,n), concentrated in a neighbourhood of the
left-hand endpoint (for small p its components L(j,n)

p exceed significantly the other
terms in absolute value) and the term R(j,n), concentrated in a neighbourhood of
the right-hand endpoint. In other words, M (j,n) yields a rough approximation of
the eigenvector, which is satisfactory for central components, while L(j,n) and R(j,n)

play the roles of left- and right-hand corrections, respectively.
In the symmetric case, that is, when the symbol has the property a(t) = a(t−1)

(which is equivalent to g(σ) = g(2π − σ)), the statement of Theorem 2.6 can be
simplified slightly.

Corollary 2.1. Assume that α > 1 and let a ∈ MSLα be a function with real
Fourier coefficients (so that a(t) = a(t−1)). Then for each s ∈ [0, 2π]

ϕ0 = π, ϕ(λ) = [g|[0,π]]−1(λ), ψ(s) = g|[0,π](s),

σ1(s) = s, σ2(s) = 2π − s, b(eiσ, s) =
g(σ)− g(s)

2(cos s− cosσ)
,

and the formulae in Theorem 2.6 can be written as follows:

M (j,n)
p = 2ij+1|θ(z1)| sin

((
p− n− 1

2

)
s
(n)
j − jπ

2

)
,

L(j,n)
p =

z
(n+1)/2
1 θ(z1)
2πi|θ(z1)|

∫
T

(
θ(t)− θ(z1)
t− z1

− θ(t)− θ(z1)
t− z1

)
dt

tp+1
, (2.12)

R(j,n)
p := L

(j,n)
n−p−1.
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Theorem 2.6 reveals the structure of eigenvectors, but can only be implemented
if we calculate the exact eigenvalues and can invert (n + 2) × (n + 2)-matrices.
To simplify the formulae in Theorem 2.6 we look at the ‘basic’ approximation
(see Theorem 2.1) of the equation for the eigenvalues,

(n+ 1)s+ η(s) = πj. (2.13)

Note that if it has roots ŝj,n, then

|sj,n − ŝj,n| = o

(
1

nα−1

)
, n→∞,

uniformly in j. Equation (2.13) is easy to solve numerically. In addition, asymp-
totic approximations to its solution are given by the formulae in Theorem 2.3.
For s ∈ [0, π] we have the Wiener-Hopf factorization

b(t, s) = b+(t, s)b−(t, s),

where
b±(t, s) = exp

(
1
2

log b(t, s)± 1
2πi

∫
T

log b(τ, s)
τ − t

dτ

)
. (2.14)

Theorem 2.7. Let a ∈ MSLα , α > 3. Let ẑk := eiσk(sj,n) , k = 1, 2, and for
p = 0, 1, . . . , n− 1 set

M̂ (j,n)
p :=

ẑ
(n−1)/2−p
1

|b+(ẑ1)|
+ (−1)n−j ẑ

(n−1)/2−p
2

|b+(ẑ2)|
,

L̂(j,n)
p := − ẑ

(n+1)/2
1 b+(ẑ1)
2πi|b+(ẑ1)|

∫
T

(
b−1
+ (t)− b−1

+ (ẑ1)
t− ẑ1

−
b−1
+ (t)− b−1

+ (ẑ2)
t− ẑ2

)
dt

tp+1
,

R̂(j,n)
p := L̂

(j,n)
n−p−1.

Let Ω(j,n) be the vector defined as the remainder term in the formula

X(j,n) = M̂ (j,n) + L̂(j,n) + R̂(j,n) + Ω(j,n). (2.15)

Then Ω(j,n)
p = o(1/nα−3) as n→∞ and this relation holds uniformly in j and p.

The integral involved in Theorem 2.7 can often be simplified. For example, if the
symbol is rational, then the integral can be calculated using residue theory. In fact,
in this case the function b( · , s) given by (2.3) can be expressed by

b(t, s) =
P (t, s)
Q(t, s)

,

where P and Q are polynomials in t. It is easy to see that the symbol b( · , s) has
a Wiener-Hopf factorization b(t, s) = b−(t, s)b+(t, s), where

b−(t, s) =

∏ρ
j=1

(
1− 1

vj(s)t

)∏q
j=1

(
1− 1

uj(s)t

) , b+(t, s) = β0(s)

∏ρ
j=1

(
1− t

vj(s)

)∏q
j=1

(
1− t

uj(s)

) ;

here ρ and q are positive integers, vj(s) and v−1
j (s) are formed from the 2ρ zeros

of P ( · , s), uj(s) and u−1
j (s) are formed from the 2q zeros of Q( · , s), and β0(s) is

a constant. Again, for brevity we write b±(t) instead of b±(t, sj,n).
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Theorem 2.8. Let a be a rational symbol in MSLα . Assume further that b( · , s)
has only simple poles. Then an eigenvector can be expressed in the following form:

X(j,n) = M̂ (j,n) + L̂(j,n) + R̂(j,n) + Ω(j,n),

where, for p = 0, 1, . . . , n− 1,

M̂ (j,n)
p :=

ẑ
(n−1)/2−p
1

|b+(ẑ1)|
+ (−1)n−j ẑ

(n−1)/2−p
2

|b+(ẑ2)|
,

L̂(j,n)
p :=

ẑ
(n+1)/2
1 (ẑ1− ẑ2)b+(ẑ1)

|b+(ẑ1)|

q∑
m=1

v−p−1
m (sj,n)

∂b+
∂t (vm(sj,n))(vm(sj,n)− ẑ1)(vm(sj,n)− ẑ2)

,

R̂(j,n)
p := L̂

(j,n)
n−p−1,

and for each γ > 0 the limit relation Ω(j,n)
p = o(1/nγ) holds uniformly in j and p

as n→∞.

Note that if some of the poles of b( · , s) are multiple, then we can also find an
expression for L̂(j,n)

p using residue theory.
In [42] we presented numerical experiments validating the formulae in Theo-

rems 2.7 and 2.8 and revealing the meaning of the different terms in these formulae.

§ 3. Symmetric symbols

In this section we consider complex-valued polynomial symbols of the form

a(t) =
r∑

k=−r

akt
k, ak = a−k, t ∈ T, (3.1)

where r > 1 and ar ̸= 0. Such a polynomial is an even function of the angle ϕ:

a(eiϕ) = a(e−iϕ), ϕ ∈ [0, π]. (3.2)

Let R(a) denote the set of values of a, that is, the curve on the complex plane
formed by the points a(eiϕ):

R(a) := a(T).

Then (for instance, see Theorems 5.28 and 5.32 in [3]) the limit as n → ∞ of the
sequence of spectra of the Tn(a) coincides with R(a). Thus, for sufficiently large n
the eigenvalues of the matrix Tn(a) lie in a small neighbourhood of R(a).

3.1. Eigenvalues of symmetric Toeplitz matrices. Consider a symbol of the
form (3.1) and assume that

1) the curve R(a) does not intersect itself; in particular, a(1) ̸= a(−1);
2) a′(t) ̸= 0 for t ∈ T \ {−1, 1};
3) a′′(±1) ̸= 0.

As usual, set g(ϕ) := a(eiϕ). Then it follows from (3.2) that

R(a) = {z ∈ C : z = g(ϕ), ϕ ∈ [0, π]}, g′(0) = g′(π) = 0, a′(±1) = 0.
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For sufficiently small δ > 0 set Rδ(a) := g(Ωδ), where

Ωδ := {ϕ ∈ C : 0 < Reϕ < π, | Imϕ| < δ}.

First we look at the equation a(z)− λ = 0 for λ ∈ R(a) \ {a(1), a(−1)}. It has 2r
roots in the complex plane, which we arrange in the order of ascending absolute
values. Taking the symmetry (3.2) into account we can represent this set of roots
as follows: {

u1, u2, . . . , ur−1, ur,
1
ur
,

1
ur−1

, . . . ,
1
u2
,

1
u1

}
. (3.3)

Thus, the root uk, 1 6 k 6 r − 1, which lies outside the unit circle T, corresponds
to the root 1/uk inside T. By conditions 1) and 2) precisely two roots lie on T:

ur = eiϕ and
1
ur

= e−iϕ, ϕ ∈ (0, π). (3.4)

The other 2r− 2 roots are separated from T uniformly in λ ∈ R(a) \ {a(1), a(−1)}.
Now let λ ∈ Rδ(a). It is easy to show that by 2) and 3), for sufficiently small δ
the equation a(z) − λ = 0 has a unique root in a neighbourhood of the upper
half-circle, which has the form zr = eiϕ, where ϕ := ϕ(λ) is an analytic function
in Ωδ. In accordance with this definition g(ϕ(λ)) = λ for λ ∈ Rδ(a). We will regard
the uk := uk(λ) = uk(g(ϕ)) as functions of ϕ and denote them by uk := uk(ϕ),
where ϕ ∈ Ωδ. Now there exists a positive δ0 such that

inf
k=1,2,...,r−1

inf
λ∈Rδ(a)

dist(uk,T) > eδ0 − 1 (> δ0). (3.5)

Consider the functions

h(z) =
r−1∏
k=1

(
1− z

uk(ϕ)

)
, z ∈ C, ϕ ∈ Ωδ, (3.6)

and

θ(ϕ) = −i log
h(eiϕ)
h(e−iϕ)

, ϕ ∈ Ωδ. (3.7)

It follows from the definition (3.6) of h that h(z) ̸= 0 for z ∈ Γδ := exp{iΩδ}. Hence
we can take a continuous branch of the function θ(ϕ) in the domain ϕ ∈ Ωδ such
that θ(0) = θ(π) = 0. We introduce the quantities

dj,n :=
πj

n+ 1
and ej,n := dj,n −

θ(dj,n)
n+ 1

(3.8)

and the domains

Ωj,n :=
{
ϕ ∈ C : |ϕ− ej,n| 6

cj,n
(n+ 1)2

}
, (3.9)

where j = 1, 2, . . . , n, cj,n = 3M ′
j,nMj,n,

Mj,n = sup
ϕ∈Ωj,n

|θ(ϕ)| and M ′
j,n = sup

ϕ∈Ωj,n

|θ′(ϕ)|. (3.10)

Note that cj,n is bounded uniformly in j and n.
Now we state the main result of this subsection.
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Theorem 3.1. Let a be a function of the form (3.1) such that conditions 1)–3) are
satisfied. Then the following results hold for sufficiently large n.

(i) All the eigenvalues of Tn(a) are simple and λj,n ∈ g(Ωj,n) for j = 1, 2, . . . , n.
(ii) The points ϕj,n (∈ Ωδ ) such that λj,n = g(ϕj,n) satisfy

(n+ 1)ϕj,n + θ(ϕj,n) = πj + ∆n(ϕj,n), j = 1, 2, . . . , n, (3.11)

where |∆n(ϕ)| = O(e−∆·n) and |∆′
n(ϕ)| = O(ne−∆·n) for some positive constant ∆,

uniformly in ϕ ∈ Ωj,n and j as n → ∞. Equation (3.11) has a unique solution in
the domain Ωj,n .

(iii) Each equation of the form

(n+ 1)ϕ∗j,n + θ(ϕ∗j,n) = πj, j = 1, 2, . . . , n, (3.12)

has a unique solution in Ωj,n , and λj,n = g(ϕ∗j,n) + O(e−∆·n/n) for some positive
constant ∆ uniformly in j as n→∞.

(iv) The function

Hj,n(ϕ) := dj,n −
θ(ϕ)
n+ 1

(3.13)

is a contraction mapping of Ωj,n into itself; if

ϕ
(1)
j,n = ej,n and ϕ

(k)
j,n = Hj,n(ϕ(k−1)

j,n ), k > 2, (3.14)

then

|ϕ∗j,n − ϕ
(k)
j,n| = 6

(
M ′

j,n

n+ 1

)k(
Mj,n

n+ 1

)
, (3.15)

|λ∗j,n − g(ϕ(k)
j,n)| = 6

(
M ′

j,n

n+ 1

)k(
Mj,nK

′
j,n

n+ 1

)
, (3.16)

where Mj,n and M ′
j,n are defined by (3.10) and K ′

j,n = supϕ∈Ωj
|g(ϕ)|.

Setting k = 2 in (3.15) and (3.16) we obtain the following asymptotic expansions
for ϕj,n and λj,n.

Theorem 3.2. Let a(t) be a symbol of the form (3.1) such that conditions 1)–3)
are satisfied. Then

(i)

ϕj,n = dj,n −
θ(dj,n)
n+ 1

+
θ(dj,n)θ′(dj,n)

(n+ 1)2
+ ∆(6)

j,n, (3.17)

where ∆(6)
j,n = O(1/n3) as n→∞ uniformly in j = 1, 2, . . . , n;

(ii)

λj,n = g(dj,n) +
c1(dj,n)
n+ 1

+
c2(dj,n)
(n+ 1)2

+ ∆(7)
j,n, (3.18)

where ∆(7)
j,n = O(dj,n(π − dj,n)/n3) uniformly in j = 1, 2, . . . , n as n→∞,

c1(d) = −g′(d)θ(d) and c2(d) =
1
2
g′′(d)θ2(d) + g′(d)θ(d)θ′(d).
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We have given the asymptotic formulae (3.17) and (3.18) as examples. Using
estimates (3.15) and (3.16) for k > 2 we can find arbitrarily many terms of the
expansions for λj,n and ϕj,n.

As a consequence of Theorem 3.2, we obtain a result on the extreme eigenvalues.

Theorem 3.3. Let a be a symbol of the form (3.1) and assume that conditions 1)–3)
are satisfied. Then the following results hold:

(i) if j2/(n+ 1) → 0, then

λj,n = g(0) +
c3j

2

(n+ 1)2
+

c4j
2

(n+ 1)3
+ ∆(8)

j,n, (3.19)

where c3 = π2g′′(0)/2, c4 = −π2g′′(0)θ′(0) and ∆(8)
j,n = O(j4/n4) as n→∞;

(ii) if (n+ 1− j)2/(n+ 1) → 0, then

λj,n = g(π) +
c5(n+ 1− j)2

(n+ 1)2
+
c6(n+ 1− j)2

(n+ 1)3
+ ∆(9)

j,n, (3.20)

where c5 = π2g′′(π)/2, c6 = −π2g′′(π)θ′(π) and ∆(9)
j,n = O((n + 1 − j)4/n4) as

n→∞.

Remark 3.1. The leading term of the asymptotic expansion (3.18) corresponds to
a point g(d) on the curve R(a). This approximation to the eigenvalue λj,n ≈ g(d)
has accuracy O(1/n) and cannot be considered satisfactory: the distance between
successive eigenvalues also has order O(1/n). Thus, this approximation ‘does not
separate’ eigenvalues (see Remark 2.1). On the other hand the approximation
λj,n ≈ g(ej,n) has accuracy O(1/n2) (see (3.16) for k = 1) and can be treated as
an individual approximation to the eigenvalue λj,n. In particular, the expression
g(ej,n) can be used to analyze the position of λj,n relative to the curve R(a). In fact,

g(ej,n) = g

(
d− θ(d)

n+ 1

)
= g

(
d− Re θ(d)

n+ 1
− i

Im θ(d)
n+ 1

)
,

where

Re θ(d) = arg
h(eid)
h(e−id)

, Im θ(d) = − log
|h(eid)|
|h(e−id)|

.

Setting

ẽj,n := d− Re θ(d)
n+ 1

=
πj − Re θ(d)

n+ 1
we obtain

g(ej,n) = g(ẽj,n)− i
g′(ẽj,n) Im θ(d)

n+ 1
+O

(
1
n2

)
.

That is, to within O(1/n2) the eigenvalue λj,n lies on the normal to R(a) at the
point g(ẽj,n). The distance from λj,n along the normal has order O(1/n), provided
that Im θ(d) ̸= 0. Note that depending on the sign of Im θ(d) the point λj,n lies to
the right or the left of R(a) in the plane.

The numerical gain from the formulae in Theorems 3.1–3.3 was fairly compre-
hensively analyzed in [44].



Asymptotics of eigenvalues and eigenvectors 1591

3.2. Eigenvectors of symmetric Toeplitz matrices.

Theorem 3.4. Let a(t) be a symbol of the form (3.1) and assume that condi-
tions 1)–3) are satisfied. Then eigenvectors X(j,n) = (X(j,n)

p )n
p=1 associated with

the eigenvalues λj,n can be chosen so that the following asymptotic expressions
(putting λ := λj,n for brevity) hold:

X(j,n)
p = aj,p(λ) + bj,p(λ) + cj,p(λ) +O(e−δ1n), p = 1, 2, . . . , n, (3.21)

where the remainder estimate is uniform with respect to λ, and δ1 is independent
of n, j and p. Furthermore,

aj,p(λ) =
(−1)je−ipϕ(λ)

hλ(eiϕ(λ))
− (−1)jeipϕ(λ)

hλ(e−iϕ(λ))
, (3.22)

bj,p(λ) = (−1)j
r−1∑
ν=1

[
2i sin(ϕ(λ))
up

ν(λ)
· 1
(uν(λ)− eiϕ(λ))(uν(λ)− e−iϕ(λ))h′λ(uν(λ))

]
(3.23)

and

cj,p(λ) = (−1)j−1bj,n+1−p(λ). (3.24)

Remark 3.2. Theorem 3.4 was established as Theorem 2.3 in [45], albeit under the
additional assumption that the function a(t) − λ has only simple zeros for each λ
in Rδ(a). Now, after [42], we can drop this technical condition.

Remark 3.3. Let us analyze the formulae in Theorem 3.4. As the root uν(λ) lies
outside the unit circle, the term bj,p(λ) is small for components with large index
p, and the term cj,p(λ) is small when n − p is large. In addition, it is easy to see
that, as n grows, the contribution of these terms can be significant for a few of the
first and last components, respectively. Note however, that the number of these
components does not depend significantly on n. Components in the middle part of
the vector X(j,n) are mostly well approximated by aj,p(λ) from (3.22). A numerical
illustration of this observation can be found in [45].

Remark 3.4. In (3.22)–(3.24) we can replace the exact eigenvalues by their approx-
imations (asymptotic expressions), for instance, the ones given by (3.18).

Remark 3.5. Formulae (3.22)–(3.24) become much simpler for eigenvectors corres-
ponding to the extreme eigenvalues (see Theorem 2.4 in [45]).

§ 4. Eigenvalues and eigenvectors of Hessenberg Toeplitz
matrices and a problem of Dai, Geary and Kadanoff’s

4.1. Eigenvalues. Dai, Geary and Kadanoff [46] and Kadanoff [47] considered
symbols of the form

a(t) =
(

2− t− 1
t

)γ

(−t)β , t ∈ T, (4.1)
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where 0 < γ < −β < 1. They conjectured that for large n the corresponding
eigenvalues λ = λj,n satisfy

λj,n ≈ a

(
n(2γ+1)/n exp

{
−i

(
2πj
n

)
− i

n
d

(
2πj
n

)}
+ o

(
1
n

))
, (4.2)

where d is some function (unknown to them). This conjecture was supported by
numerical experiment and a certain heuristic argument.

Now we state the main results of [48] and compare these with (4.2).
As usual, let H∞ be the Hardy space of bounded analytic functions in the unit

disc D. For a fixed function a ∈ C(T) let windλ(a) denote the number of windings
of the image of a, that is, the curve R(a) := {z ∈ C : z = a(t), t ∈ T}, about the
point λ ∈ C\R(a), and let D(a) be the set of points λ ∈ C for which windλ(a) ̸= 0.
In this subsection we treat matrices Tn(a) with symbols of the form a(t) = t−1h(t),
where

1) h ∈ H∞ and h0 := h(0) ̸= 0;
2) h(t) = (1− t)αf(t), where α ∈ [0,∞) \ Z and f ∈ C∞(T);
3) h extends analytically to an open neighbourhood W of the set T\{1} which

does not contain 1;
4) R(a) is a Jordan curve in C and windλ(a) = −1 for each λ ∈ D(a).

Note that if we set γ = α/2 and β = γ − 1 in (4.1), then the symbol satisfies
conditions 1)–4), with f(t) ≡ (−1)2γ−1.

Let Dn(a) denote the determinant of Tn(a). Then the eigenvalues of the matrix
Tn(a) are the roots of the equation Dn(a − λ) = 0. By our assumptions Tn(a) is
a Hessenberg matrix, that is, it can be obtained from a lower triangular matrix by
adding one nontrivial diagonal. In combination with the Baxter-Schmidt formula
(see [5], § 2.3, for instance) this enables us to represent Dn(a − λ) as a Fourier
integral. Its value depends significantly on the pole at λ and the singularity of the
term (1 − t)α at 1. Let W0 be a small neighbourhood of zero in C. We can show
that for each λ ∈ D(a) ∩ (a(W ) \W0) there exists a unique point tλ /∈ D such that
a(tλ) = λ. An asymptotic analysis of the Fourier integral just mentioned yields an
asymptotic representation for Dn(a− λ).

In all the statements in this subsection we take

α0 := min{α, 1} and cα :=
π

f(1)Γ(α+ 1) sin(απ)
.

Theorem 4.1. Let a(t) = t−1h(t) be a symbol satisfying conditions 1)–4). Then for
each small open neighbourhood W0 of zero in C and points λ ∈ D(a)∩ (a(W ) \W0)

Dn(a− λ) = (−h0)n+1

(
1

tn+2
λ a′(tλ)

− 1
cαλ2nα+1

+R1(n, λ)
)
, (4.3)

where R1(n, λ) = O(1/nα+α0+1) as n→∞ uniformly in λ ∈ a(W ) \W0 .

We now turn to the main results in this subsection. Set ωn := exp(−2πi/n).
For the values of n under consideration there exist positive integers n1 and n2 such
that ωn1

n , ωn−n2
n ∈ a−1(W0), but ωn1+1

n , ωn−n2−1
n /∈ a−1(W0). Recall that a(tλ) = λ.
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Theorem 4.2. Let a(t) = t−1h(t) be a symbol with properties 1)–4). Then for each
small open neighbourhood W0 of zero and for each j between n1 and n− n2 ,

tλj,n
= n(α+1)/nωj

n

(
1 +

1
n

log
(
cαa

2(ωj
n)

a′(ωj
n)ω2j

n

)
+R2(n, j)

)
, (4.4)

where R2(n, j) = O(1/nα0+1) +O(log n/n2) as n→∞ uniformly in j .

Thus formula (4.4) proves the conjecture (4.2) in the special case when β = γ−1.
In addition, we have found the function

d(t) := t log
(
cαa

2(t)
a′(t)t2

)
and have refined the order of the error term.

Taking the value of a at the point (4.4) we obtain the following asymptotic
expression for λj,n.

Theorem 4.3. Let a(t) = t−1h(t) be a symbol with properties 1)–4). Then for each
small open neighbourhood W0 of zero in C and j between n1 and n− n2 ,

λj,n = a(ωj
n)+(α+1)ωj

na
′(ωj

n)
log n
n

+
ωj

na
′(ωj

n)
n

log
(
cαa

2(ωj
n)

a′(ωj
n)ω2j

n

)
+R3(n, j), (4.5)

where R3(n, j) = O(1/nα0+1)+O(log2 n/n2) as n→∞ uniformly for j between n1

and n− n2 .

Remark 4.1. Here we have written out only a few of the first terms of the asymptotic
expansion. Note however that using our method an arbitrary number of terms in
this expansion can be obtained.

A numerical illustration of Theorem 4.3 can be found in [48].

4.2. Eigenvectors. To present the formulae for eigenvectors we define a function
b(j,n) on T by

b(j,n)(t) :=
1

h(t)− λj,nt

and let b(j,n)
p denote its pth Fourier coefficient.

Theorem 4.4. If b(j,n)
n−1 ̸= 0, then

X(j,n) := (b(j,n)
p )n−1

p=0 (4.6)

is an eigenvector of Tn(a) corresponding to the eigenvalue λj,n .

The next result describes the asymptotic behaviour of b(j,n)
p for large p and n.

Theorem 4.5. The relation

b(j,n)
p =

D2(ωj
n)ω−jp

n

(D1(ω
j
n)nα+1)p/n

(1 +R1(j, n, p)) +
D3(ωj

n)
pα+1

(1 +R2(j, n, p)) (4.7)
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holds, where

D1(u) :=
cαa

2(u)
u2a′(u)

, D2(u) :=
−1

u2a′(u)
, D3(u) :=

1
cαa2(u)

,

R1(j, n, p) = O

(
p

nα0+1

)
+O

(
log n
n

)
uniformly in j as p, n→∞,

R2(j, n, p) = O

(
log n
n

)
+O

(
1
p

α0
)

uniformly in n and j.

We stress that we only consider points ωj
n in W \ a−1(W0). In this domain

the functions a and a′ are bounded and separated away from zero. Hence the Dℓ,
ℓ = 1, 2, 3, are also bounded and separated away from zero there. Note also that
since p < n, R1 tends to zero as n→∞.

Remark 4.2. We compare the above results on the asymptotics of eigenvectors and
the results in [46] and [47] concerning symbols of the form (4.1).

We have already mentioned that for β = γ − 1 the function (4.1) becomes ‘our’
symbol of the form a(t) = t−1h(t), with h(t) = (−1)2γ−1(1 − t)2γ . In [46] the
authors conjectured that an eigenvector has the form

X(j,n) ≈
(

1 +O(1/n)
tpλj,n

)n−1

p=0

, where tλj,n
≈ n(α+1)/nωj

n (4.8)

as n→∞. Theorem 4.2 refines this conjecture and proves it while giving a rigorous
estimate for the error term. Note that

D
p/n
1 (ωj

n) = exp
(
p

n
logD1(ωj

n)
)

= exp
(
p

n
O(1)

)
= 1 +O

(
p

n

)
.

This shows that (4.8) corresponds to the first term on the right-hand side of (4.7) in
the case when the ratio p/n is close to zero. Otherwise the representation (4.8) can
give a large error: the corresponding numerical examples were presented in [50].

Remark 4.3. Our asymptotic expansion (4.7) holds for λj,n outside a small neigh-
bourhood W0 of zero and for large p. For small p, for instance, p = 0, 1, . . . ,m− 1,
m≪ n, the values of b(j,n)

p can be calculated using the relation between the Fourier
coefficients of b(j,n) = 1/(h(t)−λj,nt) and h(t) = (1− t)αf(t). Here we obtain a tri-
angular system of equations, which can be solved by O(m2) operations, and taking
m = [

√
n ] we need O(n) operations. We can calculate the remaining components

using asymptotic formulae (4.7), which also have order of complexity O(n) from
a numerical standpoint.

§ 5. Spectral theory of Wiener-Hopf operators with symmetric
complex kernels and rational symbols on a large interval

A truncated Wiener-Hopf operator has the form

(Kτf)(t) := f(t) +
∫ τ

0

k(t− s)f(s) ds, t ∈ (0, τ). (5.1)
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We assume here that k is a function in L2(R), so the integral operator in (5.1) is
a compact Hilbert-Schmidt operator on L2(0, τ) for every τ > 0. Let spKτ denote
the spectrum of Kτ . As Kτ −I is compact, all points in spKτ \{1} are eigenvalues.

Here we make the two basic assumptions. First, k is a symmetric complex
function, that is k(t) = k(−t) for t ∈ R. Second,

a(x) := 1 +
∫ ∞

−∞
k(t)eixt dt, x ∈ R,

the so-called symbol of the operator, is rational. These two assumptions are equiv-
alent to a representation of the form

k(t) =



m∑
ℓ=1

pℓ(t)e−λℓt for t > 0,

m∑
ℓ=1

pℓ(−t)e−λℓt for t < 0,

where the λℓ are complex numbers with Reλ > 0 and the pℓ(t) are polynomials with
complex coefficients. Since k(t) = k(−t) for all t ∈ R if and only if a(x) = a(−x)
for all x ∈ R, the symbol is an even rational function, and we can write

a(x) =
r∏

j=1

x2 − ζ2
j

x2 − µ2
j

, x ∈ R,

where ζj ∈ C, µj ∈ C, Reµj > 0 and ζ2
j ̸= µ2

j for all j and k. To stress the
dependence of Kτ on the symbol a, following [54] we denote Kτ by Wτ (a).

Putting R := R∪{±∞} we extend the symbol by setting a(±∞) = 1. As before,
let R(a) be the essential image of a, that is, R(a) := a(R). By our assumptions
R(a) is an analytic curve in the plane such that as x varies from −∞ to 0 the
value a(x) of the symbol ranges from 1 to a(0) on this curve, and when x varies
further from 0 to +∞, the value of the symbol traverses R(a) from a(0) to 1 in the
reverse direction.

It was shown in [54] that in our case the limit of spWτ (a) coincides with R(a).
So we will look for eigenvalues in a neighbourhood of R(a). We assume in addition
that R(a) is a curve without self-intersections.

With each positive number τ we associate the half-strip

Sτ :=
{
z ∈ C : Re z > 0, | Im z| 6 β

τ

}
,

where β > 0 is fixed and sufficiently large. Consider a finite covering of the half
axis by open intervals I1 ∪ · · · ∪ IN = (0,∞). For each interval I ∈ {In}N

n=1 we
consider either the closed subintervals of I of the form

Ik,t :=
[(
k − 1

2

)
π

τ
,

(
k +

1
2

)
π

τ

]
or the closed intervals of the form

Ik,t :=
[
k
π

τ
, (k + 1)

π

τ

]
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lying in I (depending on the position of b(I)1 in C); see (3.6) and (3.7) in [51].
In this way we obtain N families of rectangles

Sk,τ := {z ∈ Sτ : Re z ∈ Ik,τ}.

The proofs of the main results in this section are based on an explicit formula
(see [55]) for the Fredholm determinants

det
(

1
1− λ

(Wτ (a)− λI)
)
. (5.2)

Note that for each λ ∈ R(a)\{1} the equation a(z) = λ has precisely 2r complex
roots

ω1(λ), ω2(λ), . . . , ωr(λ), −ω1(λ), −ω2(λ), . . . , −ωr(λ). (5.3)

We can number them so that ω1(λ) ∈ R and Imωj(λ) > 0 for j > 2.
Fix an open neighbourhood U of R(a). Then spWτ ⊂ U if τ is sufficiently large.

Set Π = {z ∈ C : | Im z| < δ, a(z) ∈ U}. For z ∈ Π consider the two functions

Q(z) :=
r∏

ℓ=1

(z − iµℓ) and P (z) :=
r∏

ℓ=2

[z − ωℓ(a(z))]

and set

b(z) :=
Q(−z)2

Q(z)2
· P (z)2

P (−z)2
.

The main result of this section is the following.

Theorem 5.1. Let clos I be the closure of I in [0,∞] and assume that for λ in
a(clos I) all the roots ω2(λ), . . . , ωτ (λ) are distinct. Then there exists τ0 such that
the following results hold for all τ > τ0 .

(i) If λ = a(z) ∈ U is an eigenvalue of Wτ (a) such that Re z ∈ Ik,τ for some
Ik,τ ⊂ I , then z ∈ Sk,τ .

(ii) For each Ik,τ ⊂ I the set a(Sk,τ ) contains a unique eigenvalue λk,τ of Wτ (a),
which has algebraic multiplicity 1.

(iii) The function

Φk,τ (z) :=
kπ

τ
+

1
2iτ

log b(z)

is a contraction mapping of Sk,τ into itself; for

z
(0)
k,τ :=

kπ

τ
and z

(n)
k,τ := Φk,τ

(
z
(n−1)
k,τ

)
, n > 1,

the relation
λk,τ = a(z(n)

k,τ ) +O

(
1

τn+1

)
as τ →∞

holds uniformly in k : there exist constants Cn < ∞ independent of k and τ such
that

|λk,τ − a
(
z
(n)
k,τ

)
| 6 Cn

τn+1
.

1See the definition of the function b(z) below.
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(iv) The following asymptotic expression holds for the points zk,τ
2 :

zk,τ = z
(0)
k,τ +

c1(z
(0)
k,τ )

2iτ
+
c2(z

(0)
k,τ )

(2iτ)2
+
c3(z

(0)
k,τ )

(2iτ)3
+O

(
1
τ4

)
,

where

c1(z) = log b(z), c2(z) =
b′(z)
b(z)

log b(z)

and

c3(z) =
b′(z)2

b(z)2
log b(z) +

b′′(z)b(z)− b′(z)2

2b(z)2
(log b(z))2.

(v) The following asymptotic expression holds for λk,τ :

λk,τ = a(z(0)
k,τ ) +

d1(z
(0)
k,τ )

2iτ
+
d2(z

(0)
k,τ )

(2iτ)2
+
d3(z

(0)
k,τ )

(2iτ)3
+O

(
1
τ4

)
, (5.4)

where

d1(z) = a′(z)c1(z), d2(z) = a′(z)c2(z) +
a′′(z)

2
c1(z)2

and

d3(z) = a′(z)c3(z) + a′′(z)c1(z)c2(z) +
a′′′(z)

6
c1(z)3.

Remark 5.1. We have presented formula (5.4) as an example of an explicit calcula-
tion of a few of the first terms in the asymptotic expansion. Using our method we
can find an arbitrary number of these terms.

In conclusion we present a result concerning eigenfunctions.

Theorem 5.2. Assume that all the numbers µ1, . . . , µr are distinct. Let λ be an
eigenvalue of the operator Wτ (a) such that all the roots ω2(λ), . . . , ωτ (τ) are dis-
tinct. Then each eigenfunction ϕτ ∈ L2(0, τ) of Wτ (a) corresponding to λ has the
following form:

ϕτ (t) =
r∑

j=1

[cjeiωj(λ)t + cr+je
−iωj(λ)t] (5.5)

and satisfies the relation ϕτ (τ − t) = θϕτ (t) with θ ∈ {±1} for all t ∈ (0, τ); it can
also be expressed by

ϕτ (t) =



r∑
j=1

2cje−iωj(λ)τ/2 cos
(
ωj(λ)

(
t− τ

2

))
if θ = 1,

r∑
j=1

2icje−iωj(λ)τ/2 sin
(
ωj(λ)

(
t− τ

2

))
if θ = −1.

2This appears as z in (i).
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Note that the coefficients c1, . . . , cr in the last formulae can be calculated using
a system of r linear equations with known coefficients.

The numerical aspects of the above formulae have been discussed in [51].
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[16] A. Böttcher and H. Widom, “Szegő via Jacobi”, Linear Algebra Appl. 419:2–3
(2006), 656–667.

[17] I. Krasovsky, “Aspects of Toeplitz determinants”, Random walks, boundaries
and spectra, Progr. Probab., vol. 64, Birkhäuser/Springer Basel AG, Basel 2011,
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