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Abstract. In the framework of the solution theory for cooperative trans-
ferable utility games, a value is called socially acceptable with reference to
a certain basis of games if, for each relevant game, the payoff to any pro-
ductive player covers the payoff to any non-productive player. Firstly, it is
shown that two properties called desirability and monotonicity are sufficient
to guarantee social acceptability of type I . Secondly, the main goal is to
investigate and characterize the subclass of efficient, linear, and symmetric
values that are socially acceptable for any of three types (with clear affinities
to simple unanimity games).
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1. Introduction and notions

Formally, a transferable utility game (or cooperative game or coalitional game with
side payments) is a pair 〈N, v〉, where N is a finite set of at least two players and
v : 2N → R is a characteristic function satisfying v(∅) = 0. An element of N
(notation: i ∈ N) and a nonempty subset S of N (notation: S ⊆ N or S ∈ 2N with
S 	= ∅) is called a player and coalition respectively, and the real number v(S) is
called the worth of coalition S. A TU game 〈N, v〉 is called monotonic if v(S) ≤ v(T )
for all S, T ⊆ N with S ⊆ T . The size (cardinality) of coalition S is denoted by |S|
or, if no ambiguity is possible, by s. Particularly, n denotes the size of the player set
N . Let GN denote the linear space consisting of all games with fixed player set N .
Given two games 〈N, v〉, 〈N,w〉, and two scalars β, δ ∈ R, their linear combination
〈N, β · v + δ · w〉 is defined by (β · v + δ · w)(S) = β · v(S) + δ · w(S) for all S ⊆ N .

The solution part of cooperative game theory deals with the allocation problem
of how to divide, for any game 〈N, v〉, the worth v(N) of the grand coalition N
among the players. The traditional one-point solution concepts associate, with every
game, a single allocation called the value of the game. Formally, a value on GN is
a function ψ that assigns a single payoff vector ψ(N, v) = (ψi(N, v))i∈N ∈ RN to
every TU game 〈N, v〉. The so-called value ψi(N, v) of player i in the TU game
〈N, v〉 represents an assessment by i of his gains for participating in the game. For
instance, the egalitarian value ψEG allocates the same payoff to every player in that

ψEGi (N, v) = v(N)
n for all games 〈N, v〉 and all i ∈ N . Throughout the paper we

restrict ourselves to the class of efficient, linear, and symmetric values.
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Definition 1. A value ψ on GN is said to possess

(i) efficiency, if
∑
i∈N

ψi(N, v) = v(N) for all games 〈N, v〉;

(ii) linearity, if ψ(N, β · v + δ · w) = β · ψ(N, v) + δ · ψ(N,w) for all games 〈N, v〉,
〈N,w〉, and all scalars β, δ ∈ R;

(iii) symmetry, if ψπ(i)(N, πv) = ψi(N, v) for all games 〈N, v〉, all i ∈ N , and every
permutation π on N . Here the game 〈N, πv〉 is defined by (πv)(πS) := v(S) for
all S ⊆ N .

Our main goal is to develop the notion of social acceptability on the class of effi-
cient, linear, and symmetric values. Undoubtedly, the Shapley value (Shapley, 1953)
is the most appealing value of this class, whereas the solidarity value introduced
in (Nowak and Radzik, 1994) has clear affinities to the Shapley value. In fact,
these clear affinities have been stressed in Calvo’s approach (Calvo, 2008) to non-
transferable utility (NTU) games (inclusive of TU games) by introducing the so-
called “random marginal NTU value” and “random removal NTU value” as the
NTU counterparts of the Shapley TU value and the solidarity TU value, respec-
tively, in the sense that pairwise coincidence of values happens to occur on the class
of TU games. Surprisingly, it turns out that the solidarity value and the various
social acceptability notions are well-matched. In order to review similar axiomati-
zations of both the Shapley value and the solidarity value, we recall three essential
properties of values for TU games.

Definition 2. A value ψ on GN possesses

(i) substitution property, if ψi(N, v) = ψj(N, v) for all games 〈N, v〉, all pairs i, j ∈
N , such that players i and j are substitutes in the game 〈N, v〉, i.e., v(S∪{i}) =
v(S ∪ {j}) for all S ⊆ N\{i, j};

(ii) null player property, if ψi(N, v) = 0 for all games 〈N, v〉, all i ∈ N , such that
player i is a null player in the game 〈N, v〉, i.e., v(S ∪ {i}) = v(S) for all
S ⊆ N\{i};

(iii) A-null player property, if ψi(N, v) = 0 for all games 〈N, v〉, all i ∈ N , such that

player i is a A-null player in the game 〈N, v〉, i.e.,
∑
k∈S

[
v(S) − v(S\{k})

]
= 0

for all S ⊆ N with i ∈ S.

It is well-known that the symmetry property implies the substitution property.
(Shapley, 1953) and (Nowak and Radzik, 1994) proved that there exists a unique
value on GN satisfying the following four properties: efficiency, linearity, symme-
try, and either null player property or A-null player property. In fact, the ex-
plicit formulas for the Shapley value ψSh(N, v) = (ψShi (N, v))i∈N and the solidar-
ity value ψSol(N, v) = (ψSoli (N, v))i∈N are as follows (Shapley, 1953; Roth, 1988;
Driessen, 1988; Nowak and Radzik, 1994): for all i ∈ N

ψShi (N, v) =
∑

S⊆N\{i}

1

n ·
(
n−1
s

) · [v(S ∪ {i})− v(S)

]
, (1)
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or equivalently,

ψShi (N, v) =
∑
T⊆N,
T�i

1

n ·
(
n−1
t−1

) · [v(T )− v(T \{i})
]
;

ψSoli (N, v) =
∑
T⊆N,
T�i

1

n ·
(
n−1
t−1

) · 1

t
·
∑
k∈T

[
v(T )− v(T \{k})

]
. (2)

According to the so-called “Equivalence Theorem” concerning the class of effi-
cient, linear, and symmetric values, the following equivalent interpretations will be
exploited throughout the remainder of this paper (cf. (Driessen and Radzik, 2002),
(Driessen and Radzik, 2003), (Ruiz et al., 1998)).

Theorem 1. The next four statements for a value ψ on GN are equivalent.

(i) ψ verifies efficiency, linearity, and symmetry;
(ii) There exists a unique collection of constants {ρk}nk=1 with ρn = 1 such that,

for every n-person game 〈N, v〉 with at least two players, the value payoff vector
(ψi(N, v))i∈N is of the following form (cf. (Ruiz et al., 1998), Lemma 9, page
117): for all i ∈ N

ψi(N, v) =
∑
S⊆N,
S�i

ρs
s
· v(S)−

∑
S⊆N,
S ��i

ρs
n− s

· v(S); (3)

(iii) There exists a unique collection of constants B = {bk}nk=1 with bn = 1 such
that, for every n-person game 〈N, v〉 with at least two players, the value payoff
vector (ψi(N, v))i∈N is of the following form (cf. (Driessen and Radzik, 2002),
(Driessen and Radzik, 2003)): for all i ∈ N

ψi(N, v) =
∑

S⊆N\{i}

1

n ·
(
n−1
s

) · [bs+1 · v(S ∪ {i})− bs · v(S)

]
; (4)

(iv) There exists a unique collection of constants B = {bk}nk=1 with bn = 1 such
that ψ(N, v) = ψSh(N,Bv) for every n-person game 〈N, v〉 with at least two
players. Here the n-person game 〈N,Bv〉, called B-scaled game, is defined by
(Bv)(S) = bs · v(S) for all S ⊆ N , S 	= ∅.

By straightforward computations, the reader may verify that the expression on
the right hand of (3) agrees with the one on the right hand of (4) by choosing
bk =

(
n
k

)
· ρk for all k = 1, 2, . . . , n. Clearly, the expression on the right hand

of (4) reduces to the Shapley value payoff (1) of player i in the n-person game
〈N, v〉 itself (denoted by ψ = ψSh) whenever bk = 1 for all k = 1, 2, . . . , n, that is

ρk =
(
n
k

)−1
= k!·(n−k)!

n! .

Remark 1. Let ψ be an efficient, linear, and symmetric value on GN of the form
(4) with reference to the collection of constants B = {bk}nk=1 with bn = 1. Fix two
players i ∈ N , j ∈ N , i 	= j. Without going into details, by distinguishing between
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coalitions containing none, one or both players, straightforward calculations yield
the next relationship about the difference between the value payoffs of both players:

ψj(N, v) − ψi(N, v) =
∑

S⊆N\{i,j}

γ(n− 1, s)

n
· bs+1 ·

[
v(S ∪ {j})− v(S ∪ {i})

]
(5)

where γ(n− 1, s) = s!·(n−2−s)!
(n−1)! for all s = 0, 1, 2, . . . , n− 2.

Generally speaking, in view of (1), the right hand of (4) equals the Shapley
value payoff Shi(N,Bv) of player i in the B-scaled game 〈N,Bv〉. In summary, the
Equivalence Theorem 1 states that a value ψ is efficient, linear, and symmetric if
and only if the ψ-value of a game coincides with the Shapley value of the B-scaled
game (denoted by ψ(N, v) = ψSh(N,Bv)). We call ψ the per-capita Shapley value
whenever bs = 1

s for all s = 1, 2, . . . , n − 1. It appears that the solidarity value
ψSol(N, v) of the form (2) arises whenever bs = 1

s+1 for all s = 1, 2, . . . , n− 1, that

is ρs = s!·(n−s)!
n!·(s+1) . As a last, but appealing example, ψ is called a discount Shapley

value if there exists a discount factor 0 < δ ≤ 1 such that the value payoff ψ(N, v)
is of the form (4) with reference to the collection of constants bs = δn−s for all
s = 1, 2, . . . , n, that is the larger the coalition size, the larger the discount factor
δn−s of the worth v(S) of any coalition S.

Remark 2. For future purposes, we list a number of combinatorial (in)equalities.

n−1∑
k=t

(
k
t

)
· 1k = t−1 ·

(
n−1
t

)
for all t = 1, 2, . . . , n− 1. (6)

n−1∑
k=t

(
k
t

)
· n
k2·(k+1) ≤ t−1 ·

(
n−1
t

)
for all t = 1, 2, . . . , n− 1. (7)

n−1∑
k=t

(
k
t

)
· n
k·(n−k)·(n−k+1) ≥ t−1 ·

(
n−1
t

)
for all t = 1, 2, . . . , n− 1. (8)

The proofs of both (6) and (7) proceed by induction on n and are left to the
reader. In fact, (8) applied to t = 1 reduces to an equality since it concerns a
telescoping sum. For all t ≥ 2, the expression on the left hand of (8) applied to
k = n− 1 already covers the single term on the right hand.

2. Socially Acceptable Values of Three Types

Any linear value ψ on GN is fully determined by the value payoffs of games that
form a basis of GN . It is well-known that the collection of simple unanimity games
U = {〈N, uT 〉 | T ⊆ N, T 	= ∅} forms a (2n − 1)-dimensional basis of GN . Here the
{0, 1}-unanimity game 〈N, uT 〉 is defined by uT (S) = 1 if T ⊆ S, and uT (S) = 0
otherwise. In order to simplify forthcoming mathematical expressions, we prefer to
deal with the adapted collection of non-simple unanimity games 〈N, utT 〉, T ⊆ N ,
T 	= ∅, given by utT (S) = t if T ⊆ S, and utT (S) = 0 otherwise. Throughout
this paper we aim to investigate the value payoffs for productive players of T in
comparison with non-productive players of N\T .
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Definition 3. A value ψ on GN is called socially acceptable of type I if the collection
of value payoffs (ψk(N, utT ))k∈N of any adapted unanimity game 〈N, utT 〉 are such
that, for all T ⊆ N , T 	= ∅, every productive player of T receives at least as much
as every non-productive player of N\T , that is

ψi(N, utT ) ≥ ψj(N, utT ) ≥ 0 for all i ∈ T , and all j ∈ N\T . (9)

Remark 3. Since non-productive players j ∈ N\T are null players in the adapted
unanimity game 〈N, utT 〉, their Shapley value payoff ψShj (N, utT ) = 0, whereas pro-
ductive players i ∈ T are treated as substitutes who allocate the worth uT (N) = t
equally in that ψShi (N, utT ) = 1. Without going into details, it is possible to derive
from (2) that the solidarity value payoffs for these adapted unanimity games are
bounded such that for all T ⊆ N , T 	= ∅,

0 < ψSolj (N, utT ) < t
n if j ∈ N\T and t

n < ψSoli (N, utT ) < 1 if i ∈ T .

In words, the egalitarian value, the Shapley value and the solidarity value are so-
cially acceptable of type I in that these three linear values favour, in a weak or strict
sense, the productive players to the non-productive players of any (adapted) una-
nimity game. We remark that non-linear values like the nucleolus (Schmeidler, 1969)
and the τ -value (Tijs, 1981) are also socially acceptable in that, for simple unanim-
ity games, both of them coincide with the Shapley value. As already mentioned, we
restrict ourselves to the class of efficient, linear, and symmetric values.

Definition 4. Let the collection W = {〈N,wT 〉 | T ⊆ N, T 	= ∅} of coalition-

size dependent unanimity games be defined by wT (S) = s
t ·
(
s
t

)−1
if T ⊆ S, and

wT (S) = 0 otherwise.
A value ψ on GN is called socially acceptable of type II if the collection of value
payoffs (ψk(N,wT ))k∈N of any coalition-size dependent unanimity game 〈N,wT 〉
are such that, for all T ⊆ N , T 	= ∅, every productive player of T receives at least
as much as every non-productive player of N\T , that is

ψi(N,wT ) ≥ ψj(N,wT ) ≥ 0 for all i ∈ T , and all j ∈ N\T . (10)

Remark 4. The (2n−1)-dimensional collectionW of coalition-size dependent una-
nimity games forms a basis of GN since, for any TU game 〈N, v〉, its game rep-
resentation is given by v =

∑
T⊆N αvT · wT , where αvT = v(T ) if |T | = 1 and

αvT = v(T ) −
∑
k∈T

v(T\{k})
|T |−1 if |T | ≥ 2. Notice that wT (T ) = 1 and further,

wT (N) < 1 if and only if 1 < t < n.
In this setting, a player i is called a scale dummy in the game 〈N, v〉 if, for all S ⊆ N
with |S| ≥ 2 containing i, it holds

∑
k∈S v(S\{k}) = (|S| − 1) · v(S). Particularly,

any player j ∈ N\T is a scale dummy in the coalition-size dependent unanimity
game 〈N,wT 〉.

Definition 5. Let the collection Z = {〈N, ztT 〉 | T � N} of complementary una-
nimity games be defined by ztT (S) = t if S∩T = ∅, S 	= ∅, and zT (S) = 0 otherwise.
Note that ztT (N) = 0 whenever T 	= ∅. In case T = ∅, then z0∅(S) = 1 for all S ⊆ N ,
S 	= ∅, and all players are substitutes in the unitary game 〈N, z0∅〉.
A value ψ on GN is called socially acceptable of type III if the collection of value
payoffs (ψk(N, ztT ))k∈N of any complementary unanimity game 〈N, ztT 〉 are such
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that, for all T � N , T 	= ∅, every player of T (considered as an enemy) receives at
most as much as every player of N\T (considered as a friend), of which the payoff
is bounded above by the ratio of the number of enemies to the number of players,
that is

ψi(N, ztT ) ≤ ψj(N, ztT ) ≤ t

n
for all i ∈ T , and all j ∈ N\T . (11)

This paper is organized as follows. In Sections 3. and 4. we investigate and char-
acterize the class of efficient, linear, and symmetric values that verify the social
acceptability. In Section 3. it is shown that two additional properties called desir-
ability and monotonicity are sufficient to guarantee social acceptability of type I
because of unitary conditions 0 ≤ bk ≤ 1 for all k = 1, 2, . . . , n − 1. In Section 4.
the main goal is, given an efficient, linear, and symmetric value ψ, to determine the
exact conditions for social acceptability of each of three types, in terms of column
sums of suitably chosen n × n lower triangular matrices Aψ, Bψ, and Cψ respec-
tively. Section 5. contains some concluding remarks. Throughout this paper we deal
with efficient, linear, and symmetric values in such a way that the value represen-
tation (4) with reference to the collection of constants B = {bk}nk=1 is the most
appropriate tool.

3. A Sufficient Property for Social Acceptability of Values

To start with, we list the following two properties of values that turn out to be
sufficient for social acceptability of type I.

Definition 6. Let ψ be a value on GN .

(i) ψ satisfies desirability if ψj(N, v) ≤ ψi(N, v) whenever player j is less desirable
than player i in the game 〈N, v〉, that is v(S ∪ {j}) ≤ v(S ∪ {i}) for all S ⊆
N\{i, j}.

(ii) ψ satisfies monotonicity if ψi(N, v) ≥ 0 for all i ∈ N and every monotonic game
〈N, v〉.

Theorem 2. If a value ψ on GN verifies both desirability and monotonicity, then
ψ is socially acceptable of type I.

Proof. Suppose a value ψ on GN verifies both desirability and monotonicity. Let
T ⊆ N , T 	= ∅, i ∈ T , j ∈ N\T . Since utT (S ∪ {j}) = 0 ≤ utT (S ∪ {i}) for
all S ⊆ N\{i, j}, we obtain that player j is less desirable than player i in the
adapted unanimity game 〈N, utT 〉. ¿From the desirability property of ψ, we derive
ψj(N, utT ) ≤ ψi(N, utT ). Because the adapted unanimity game 〈N, utT 〉 is monotonic,
it follows from the monotonicity property of ψ that ψk(N, utT ) ≥ 0 for all k ∈ N .
So, ψ is socially acceptable of type I. ��

Neither the coalition-size dependent unanimity games 〈N,wT 〉 nor the comple-
mentary unanimity games 〈N, ztT 〉 are monotonic games, so the latter proof does
not apply in their context. Next we show that the two properties of desirability and
monotonicity are equivalent to [0, 1] boundedness for the underlying collection of
constants associated with any efficient, linear, and symmetric value.

Theorem 3. Let ψ be an efficient, linear, and symmetric value on GN of the form
(4) with reference to a collection of constants B = {bk}nk=1 with bn = 1.
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(i) ψ verifies desirability if and only if bk ≥ 0 for all k = 1, 2, . . . , n− 1.
(ii) ψ verifies desirability and monotonicity if and only if 0 ≤ bk ≤ 1 for all k =

1, 2, . . . , n− 1.

Proof. (i). If bk ≥ 0 for all k = 1, 2, . . . , n − 1, then the desirability property of
ψ follows immediately from (5). In order to prove the converse statement, suppose
ψ verifies desirability. Fix any two players i ∈ N , j ∈ N , and any coalition T ⊆
N\{i, j}. Define the n-person game 〈N,w〉 by w(T ∪ {i}) = 1 and w(S) = 0 for all
S ⊆ N , S 	= T ∪ {i}. On the one hand, from (5) we derive ψj(N,w) − ψi(N,w) =

− γ(n−1,t)
n · bt+1. On the other, player j is less desirable than player i in the game

〈N,w〉, and so, the desirability property of ψ implies ψj(N,w) ≤ ψi(N,w). We
conclude that bt+1≥0 for all t=0, 1, . . . , n−2. This proves the statement in part (i).

(ii) Suppose ψ verifies monotonicity. Let k = 1, 2, . . . , n−1 and fix player i ∈ N .
Define the n-person game 〈N, u〉 by u(S) = 1 if either i ∈ S and s ≥ k + 1 or i 	∈ S
and s ≥ k, and u(S) = 0 otherwise. On the one hand, the game 〈N, u〉 is monotonic
and so, the monotonicity property of ψ implies ψi(N, u) ≥ 0. On the other, from
(4) we derive

ψi(N, u) =
∑

S⊆N\{i}

1

n ·
(
n−1
s

) · [bs+1 · u(S ∪ {i})− bs · u(S)

]

=
∑

S⊆N\{i},
s≥k

bs+1 − bs

n ·
(
n−1
s

) =

n−1∑
s=k

(
n−1
s

)
· bs+1 − bs

n ·
(
n−1
s

) =
bn − bk

n
.

Recall bn = 1. We obtain that ψi(N, u) = 1−bk
n ≥ 0 and hence, bk ≤ 1 for all

k = 1, 2, . . . , n− 1. The technical proof of the converse statement is postponed till
the end of Section 5.. ��

Unfortunately, in the setting of efficient, linear, and symmetric values, it turns
out that both the desirability and monotonicity conditions are not necessary for the
value to be socially acceptable. That is, the class of socially acceptable values strictly
contains the class of values verifying the desirability and monotonicity properties.
In the next section we provide a full characterization of socially acceptable values
of each of three types.

4. Characterizations of Socially Acceptable Values

In the setting of values satisfying the substitution property, it suffices to distinguish
two types of players, called productive players (members of a certain coalition T )
and non-productive players (nonmembers of T ), respectively. For any efficient value
ψ on GN satisfying the substitution property, the efficiency condition applied to the
adapted unanimity game 〈N, utT 〉 reduces to the equality t · ψi(N, utT ) + (n − t) ·
ψj(N, utT )= t for all t=1, 2, . . . , n, for all i ∈ T , j ∈ N\T . Consequently, by (9), an
efficient and symmetric value ψ on GN is socially acceptable of type I if and only if

t

n
≤ ψi(N, utT ) ≤ 1 for all T ⊆ N , T 	= ∅, all i ∈ T . (12)

Theorem 4. Let ψ be an efficient, linear, and symmetric value on GN of the form
(4) with reference to the collection of constants B = {bk}nk=1 with bn = 1. With the
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value ψ, there is associated the n×n lower triangular matrix Aψ of which the rows
are indexed by the coalition size k, and the columns by the number t of productive
players in the adapted unanimity games, such that each matrix entry [Aψ ]k,t is given

by [Aψ ]k,t =
(
k
t

)
· bkk if t ≤ k ≤ n, and [Aψ]k,t = 0 otherwise. Then the value ψ

is socially acceptable of type I if and only if the sum of the entries in each column
(except for the entry in the last row n) of Aψ is not less than zero, and not more
than t−1 ·

(
n−1
t

)
with reference to its t-th column. That is,

0 ≤
n−1∑
k=t

[Aψ]k,t ≤ t−1 ·
(
n−1
t

)
for all t = 1, 2, . . . , n− 1. (13)

Proof. Fix T � N , T 	= ∅, and i ∈ T . Then utT (S) = 0 for all S ⊆ N\{i}. From (4)
and some combinatorial calculations, we derive

ψi(N, utT ) =
∑

S⊆N\{i}

1

n ·
(
n−1
s

) · [bs+1 · utT (S ∪ {i})− bs · utT (S)

]

=
∑

S⊆N\{i}

bs+1 · utT (S ∪ {i})
n ·
(
n−1
s

) =
∑

T\{i}⊆S⊆N\{i}

t · bs+1

n ·
(
n−1
s

)
=

n−1∑
s=t−1

(
n−t
s−t+1

)
· t · bs+1

n ·
(
n−1
s

) =

n∑
k=t

(
n−t
k−t
)
· t · bk
n ·
(
n−1
k−1

)
= t ·

n∑
k=t

(
k
t

)(
n
t

) · bk
k

= t ·
(
n
t

)−1 ·
n∑
k=t

[Aψ]k,t

From this we conclude that (12) holds if and only if t
n ≤ t ·

(
n
t

)−1 ·
n∑
k=t

[Aψ]k,t ≤ 1 if

and only if 0 ≤ t ·
(
n
t

)−1 ·
n−1∑
k=t

[Aψ ]k,t ≤ 1− t
n or equivalently, (13) holds. ��

Each non-zero entry of the k-th row of matrix Aψ is proportional to the average
expression bk

k . Clearly, the egalitarian value is socially acceptable of type I since it
arises as one extreme case whenever the whole matrix Aψ, except for its bottom
row, equals zero (or equivalently, bk = 0 for all k = 1, 2, . . . , n − 1). The Shapley
value ψSh, associated with the unitary collection bk = 1 for all k = 1, 2, . . . , n, arises
as the second extreme case in that the inequalities on the right hand of (13) are
met as combinatorial equalities (to be verified by induction on the number n of
players). Any linear combination ψβ = (1 − β) · ψEG + β · ψSh is of the form (4)
with reference to a constant collection bk = β for all k = 1, 2, . . . , n − 1, and such
value ψβ is socially acceptable of type I if and only if 0 ≤ β ≤ 1. Moreover, the
solidarity value ψSol is socially acceptable of type I since its associated collection
bk = 1

k+1 ≤ 1 for all k = 1, 2, . . . , n− 1.
Generally speaking, (13) applied to t = n − 1 and t = 1 respectively require 0 ≤
bn−1 ≤ 1 and 0 ≤

∑n−1
k=1 bk ≤ n−1. In case n = 3, the social acceptability condition

(13) reduces to both 0 ≤ b2 ≤ 1 and 0 ≤ b1 + b2 ≤ 2, whereas, in case n = 4, (13)
reduces to 0 ≤ b2 ≤ 1, 0 ≤ b1 + b2 + b3 ≤ 3, together with b2 + 2 · b3 ≤ 3.
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Further, observe that a n×n lower triangular matrix A = [A]k,t induces an efficient,
linear, and symmetric value on GN of the form (4) with reference to a collection of

constants {bk}nk=1 with bn = 1 provided that, for all 1 ≤ k ≤ n− 1,
(
k
t

)−1 · [A]k,t is
the same for all 1 ≤ t ≤ k.

In the context of values satisfying the substitution property, the efficiency con-
dition applied to the coalition-size dependent unanimity game 〈N,wT 〉 reduces to

the equality t · ψi(N,wT ) + (n − t) · ψj(N,wT ) = n
t ·
(
n
t

)−1
for all t = 1, 2, . . . , n,

for all i ∈ T , j ∈ N\T . Thus, by (10), an efficient and symmetric value ψ on GN is
socially acceptable of type II if and only if

1
t ·
(
n
t

)−1 ≤ ψi(N,wT ) ≤ n
t2 ·
(
n
t

)−1
for all T ⊆ N , T 	= ∅, all i ∈ T . (14)

Theorem 5. Let ψ be an efficient, linear, and symmetric value on GN of the form
(4) with reference to the collection of constants B = {bk}nk=1 with bn = 1. With the
value ψ, there is associated the n×n lower triangular matrix Bψ of which the rows
are indexed by the coalition size k, and the columns by the number t of productive
players in the coalition-size dependent unanimity games, such that each matrix entry
[Bψ]k,t is given by [Bψ]k,t = bk if t ≤ k ≤ n, and [Bψ ]k,t = 0 otherwise. Then the
value ψ is socially acceptable of type II if and only if the sum of the entries in each
column (except for the entry in the last row n) of Bψ is not less than zero, and not
more than n−t

t with reference to its t-th column. That is,

0 ≤
n−1∑
k=t

[Bψ ]k,t ≤
n− t

t
for all t = 1, 2, . . . , n− 1. (15)

Proof. The same proof technique applies as before by modifying the choice of the
basis of GN . Fix T � N , T 	= ∅, and i ∈ T . Then wT (S) = 0 for all S ⊆ N\{i}. In
the current framework, from (4) and some combinatorial calculations, we derive

ψi(N,wT ) =
∑

S⊆N\{i}

bs+1·wT (S∪{i})
n·(n−1

s )
=

∑
T\{i}⊆S⊆N\{i}

s+1
t ·

(
s+1
t

)−1 · bs+1

n·(n−1
s )

=

n−1∑
s=t−1

(
n−t
s−t+1

)
· s+1

t ·
(
s+1
t

)−1 · bs+1

n·(n−1
s )

=

n∑
k=t

(
n−t
k−t
)
· kt ·

(
k
t

)−1 · bk
n·(n−1

k−1)

= t−1 ·
(
n
t

)−1 ·
n∑
k=t

bk = t−1 ·
(
n
t

)−1 ·
n∑
k=t

[Bψ ]k,t

From this we conclude that (14) holds if and only if t−1 ·
(
n
t

)−1 ≤ t−1 ·
(
n
t

)−1 ·
n∑
k=t

[Bψ]k,t ≤ n
t2 ·
(
n
t

)−1
if and only if 1 ≤

n∑
k=t

[Bψ]k,t ≤ n
t or equivalently, (15) holds.

��

Clearly, the egalitarian value is socially acceptable of type II, whereas the Shap-
ley value, associated with the unitary collection, fails to be of type II. The extreme
case in that the inequalities of (15) are met as combinatorial equalities happens for
the collection of constants bk = n

k·(k+1) for all k = 1, 2, . . . , n−1, because of its tele-

scoping sum. Consequently, the solidarity value ψSol is socially acceptable of type II
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since its associated collection bk = 1
k+1 ≤

n
k·(k+1) for all k = 1, 2, . . . , n− 1. Due to

the development of the theory about social acceptability of type II, we end up with
the introduction of an appealing value on GN transforming an n-person game 〈N, v〉
into its per-capita game 〈N, vpc〉, applying the solidarity value and finally, repairing
efficiency in a multiplicative fashion. In formula, ψ(N, v) = n·ψSol(N, vpc) where the

characteristic function of the per-capita game 〈N, vpc〉 is defined by vpc(S) = v(S)
|S|

for all S ⊆ N , S 	= ∅.

In the framework of values satisfying the substitution property, the efficiency
condition applied to the complementary unanimity game 〈N, ztT 〉 reduces to the
equality t · ψi(N, ztT ) + (n − t) · ψj(N, ztT ) = 0 for all t = 1, 2, . . . , n − 1, for all
i ∈ T , j ∈ N\T . Thus, by (11), an efficient and symmetric value ψ on GN is socially
acceptable of type III if and only if

t
n − 1 ≤ ψi(N, ztT ) ≤ 0 for all T � N , T 	= ∅, all i ∈ T . (16)

Theorem 6. Let ψ be an efficient, linear, and symmetric value on GN of the form
(4) with reference to the collection of constants B = {bk}nk=1 with bn = 1. With the
value ψ, there is associated the n× n lower triangular matrix Cψ of which the rows
are indexed by the coalition size k, and the columns by the number t of productive
players in the complementary unanimity games, such that each matrix entry [Cψ]k,t
is given by [Cψ]k,t =

(
k
t

)
· bn−k

k if t ≤ k ≤ n − 1, and [Cψ ]k,t = 0 otherwise. Then
the value ψ is socially acceptable of type III if and only if the sum of the entries
in each column (except for the entry in the last row n) of Cψ is not less than zero,
and not more than t−1 ·

(
n−1
t

)
with reference to its t-th column. That is,

0 ≤
n−1∑
k=t

[Cψ ]k,t ≤ t−1 ·
(
n−1
t

)
for all t = 1, 2, . . . , n− 1. (17)

Proof. The same proof technique applies as before by modifying the choice of the
basis of GN . Fix T � N , T 	= ∅, and i ∈ T . Then ztT (S ∪{i}) = 0 for all S ⊆ N\{i}.
In the current framework, from (4) and some combinatorial calculations, we derive

ψi(N, ztT ) =
∑

S⊆N\{i},
S �=∅

−bs·ztT (S)

n·(n−1
s )

= −
∑

∅�=S⊆N\{i},
S∩T=∅

t·bs
n·(n−1

s )
= −

∑
S⊆N\T,
S �=∅

t·bs
n·(n−1

s )

= −
n−t∑
s=1

(
n−t
s

)
· t·bs
n·(n−1

s )
= −

n−t∑
s=1

(n−s
t )

(nt)
· t·bsn−s

= −t ·
n−1∑
k=t

(kt)
(nt)

bn−k
k = −t ·

(
n
t

)−1 ·
n−1∑
k=t

[Cψ]k,t

From this we conclude that (16) holds if and only if t
n−1 ≤ −t·

(
n
t

)−1 ·
n−1∑
k=t

[Cψ]k,t ≤ 0

if and only if 0 ≤
n−1∑
k=t

[Cψ ]k,t ≤ t−1 ·
(
n−1
t

)
or equivalently, (17) holds. ��
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Remark 5. The well-known notion of the dual game 〈N, v∗〉 of a TU game 〈N, v〉
is defined by v∗(S) = v(N)− v(N\S) for all S ⊆ N . Particularly, v∗(N) = v(N) as
well as (v∗)∗(S) = v(S) for all S ⊆ N . The interrelationship between any adapted
unanimity game 〈N, utT 〉 and any complementary unanimity game 〈N, ztT 〉 is given
by ztT (S) = t − (utT )∗(S) for all S ⊆ N , S 	= ∅. Due to its efficiency, linearity,
symmetry, and self-duality (expressing ψ(N, v∗) = ψ(N, v) for all games 〈N, v〉), the
Shapley values of both types of games are related by ψShi (N, ztT ) = t

n −ψShi (N, utT )
for all i ∈ N . Thus, ψShi (N, ztT ) = t

n − 1 if i ∈ T , whereas ψShj (N, ztT ) = t
n if

j ∈ N\T .
Both the egalitarian value and the Shapley value are socially acceptable of type
III as the two extreme cases in that the inequalities in (17) are met as equalities.
Notice the similarity of both conditions (13) and (17), while the underlying matrix
entries [Aψ]k,t and [Cψ]k,t only differ in the usual or reversed order of numbering
concerning the collection of fundamental constants bk, k = 1, 2, . . . , n − 1. Finally,
we remark that each adapted unanimity game 〈N, utT 〉 is a so-called convex game,
whereas each complementary unanimity game 〈N, ztT 〉 is a so-called 1-concave game
(Driessen et al., 2010).

5. Concluding Remarks

The social acceptability properties for the egalitarian, Shapley, and solidarity values
may be summarized as follows.

Value ψ bk Type I Type II Type III

Egalitarian value ψEG bk = 0 Yes Yes Yes

Shapley value ψSh bk = 1 Yes No Yes

Solidarity value ψSol bk = 1
k+1 Yes Yes Yes

New value ψ bk = n
k·(k+1) Yes Yes No

The efficient, linear, and symmetric value ψ, associated with the collection of
constants bk = n

k·(k+1) is indeed of type I since (13) is met because of (7), to be of

type II too since (15) is met as an equality because of a telescoping sum, but this
value fails to be of type III since (17) is not met because of (8). In fact, the latter
value satisfies the strict reversed inequalities. Remarkably, the solidarity value is
socially acceptable of each of these three types.

Corollary 1. Let ψ be an efficient, linear, and symmetric value on GN of the form
(4) with reference to a collection of constants B = {bk}nk=1 with bn = 1. For every

t = 1, 2, . . . , n, define the payoff pψt to productive players in the {0, 1}-unanimity
game 〈N, uT 〉 by

pψt =
(
n
t

)−1 ·
n∑
k=t

[Aψ]k,t where [Aψ ]k,t =
(
k
t

)
· bkk for all t ≤ k ≤ n

If ψ verifies desirability and monotonicity, then ψ is socially acceptable of type
I such that the payoffs (pψt )nt=1 form a decreasing sequence (the more productive
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players, the less their payoffs), that is

1
n = pψn ≤ pψn−1 ≤ pψn−2 ≤ . . . . . . ≤ pψ1 ≤ 1. (18)

Proof. Let t = 1, 2, . . . , n− 1. Due to some combinatorial calculations, we derive

pψt − pψt+1 =
[Aψ]t,t

(nt)
+

n∑
k=t+1

[
[Aψ]k,t

(nt)
− [Aψ]k,t+1

( n
t+1)

]

=
[Aψ]t,t

(nt)
+

n∑
k=t+1

[(k
t

)(
n
t

) − ( k
t+1

)(
n
t+1

)] · bk
k

=
[Aψ]t,t

(nt)
+

n∑
k=t+1

n− k

n− t
·
(
k
t

)(
n
t

) · bk
k

=

n∑
k=t

n− k

n− t
· [A

ψ]k,t

(nt)

By Theorem 3 (i), bk ≥ 0 for all k = 1, 2, . . . , n − 1, and so, [Aψ ]k,t ≥ 0 for all

t ≤ k ≤ n. It follows immediately that pψt ≥ pψt+1 for all t = 1, 2, . . . , n− 1. So, (18)
holds. ��

Remark 6. In (Hernández-Lamoneda et al., 2007) the basic representation theory
of the group of permutations Sn has been applied to cooperative n-person game
theory. Through a specific direct sum decomposition of both the payoff space Rn

and the space GN of n-person games, it is shown that an efficient, linear, and sym-
metric value ψ on GN is of the following form (cf. Hernández-Lamoneda et al., 2007,
Theorem 2, page 411): for all i ∈ N

ψi(N, v) =
v(N)

n
+
∑
S�N,
S�i

(n− s) ·
[
βs · v(S)− βn−s · v(N\S)

]
. (19)

Clearly, the above expression agrees with the one on the right hand of (3) by
choosing βk = ρk

k·(n−k) for all k = 1, 2, . . . , n − 1, and hence, (19) and (4) are

equivalent by choosing βk = bk
k·(n−k)·(nk)

for all k = 1, 2, . . . , n − 1. According to

(Hernández-Lamoneda et al., 2007, Corollary 5, page 419), an efficient, linear, and
symmetric value ψ verifies self-duality (i.e., ψ(N, v∗) = ψ(N, v) for all games 〈N, v〉)
if and only if βk = βn−k for all k = 1, 2, . . . , , n−1. The latter condition is equivalent
to bk = bn−k or [Aψ]k,t = [Cψ]k,t, i.e., coincidence of the two matrices Aψ and Cψ .

Remark 7. In (Joosten, 1994) it is shown that a value is efficient, symmetric,
additive, and β-egalitarian (for some β ∈ R) if and only if the value is the convex
combination of the egalitarian value and the Shapley value in that ψ(N, v) = β ·
ψEG(N, v) + (1− β) ·ψSh(N, v) for all games 〈N, v〉. Here a value ψ on GN is called
β-egalitarian if

ψi(N, v) =
β

n
·
∑
j∈N

ψj(N, v) for every null player i in the game 〈N, v〉.

A similar result is shown in (Nowak and Radzik, 1996) concerning an axiomati-
zation of the class of values that are convex combinations of the Shapley value
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and the solidarity value. Clearly, each value of this class is socially acceptable. In
(Dragan et al., 1996) collinearity between the Shapley value and various types of
egalitarian values has been treated for a class of zero-normalized games called pro-
portional average worth games.

Remark 8. We conclude this paper with the proof of the “if” part of Theorem
3(ii). Let ψ be an efficient, linear, and symmetric value on GN of the form (4) with
reference to a collection of constants B = {bs}ns=1 with bn = 1 and 0 ≤ bs ≤ 1 for
all s = 1, 2, . . . , n− 1 as well. By Theorem 3(i), ψ verifies desirability. It remains to
prove that ψ verifies monotonicity too. Let 〈N, v〉 be a monotonic n-person game

and i ∈ N . We show ψi(N, v) ≥ 0. Write b0 = 0 and as usual, γ(n, s) = s!·(n−1−s)!
n!

for all s = 0, 1, . . . , n− 1. At this stage, we put forward our claim that the player’s
payoff satisfies, for all k = 0, 1, . . . , n− 2,

ψi(N, v) ≥ fk(ψ, v, {i}) + gk+1(ψ, v, {i}) where for all � = 0, 1, . . . , n− 1,(20)

f	(ψ, v, {i}) =
∑

S⊆N\{i},
s≤�

γ(n, s) · [bs+1 − bs] · v(S ∪ {i}) (21)

g	(ψ, v, {i}) = γ(n, �) · [bn − b	] ·
∑

S⊆N\{i},
s=�

v(S ∪ {i}) (22)

The proof of the claim (20) proceeds by backwards induction on k, k = 0, 1, . . . , n−2.
For k = n − 2, the claim follows immediately from the representation (4) for ψ by
observing that bn = 1 and bs · v(S) ≤ bs · v(S ∪ {i}) for all S ⊆ N\{i} due to the
monotonicity of the game 〈N, v〉 together with bs ≥ 0 for all s = 0, 1, . . . , n− 1.
Suppose that the claim holds for some k, k ∈ {1, 2, . . . , n− 2}. We verify the claim
for k − 1. For that purpose, note that s · v(S ∪ {i}) ≥

∑
j∈S v((S ∪ {i})\{j}) for

all S ⊆ N\{i} by the monotonicity of the game 〈N, v〉. By summing up over all
coalitions of size k + 1, not containing player i, we obtain∑
S⊆N\{i},
s=k+1

v(S∪{i}) ≥ 1

k + 1

∑
S⊆N\{i},
s=k+1

∑
j∈S

v((S∪{i})\{j}) =
n− 1− k

k + 1

∑
T⊆N\{i},

t=k

v(T∪{i}).

where the last equality is due to the combinatorial argument that any T ⊆ N\{i}
of size k arises from n − k − 1 coalitions S of the form T ∪ {j}, where j ∈ N\T ,
j 	= i. ¿From the latter inequality, together with (22) and bk+1 ≤ 1 = bn, we derive
the following:

gk+1(ψ, v, {i}) = γ(n, k + 1) · [bn − bk+1] ·
∑

S⊆N\{i},
s=k+1

v(S ∪ {i})

≥ γ(n, k + 1) · [bn − bk+1] · n− 1− k

k + 1

∑
T⊆N\{i},

t=k

v(T ∪ {i})

= γ(n, k) · [bn − bk+1]
∑

S⊆N\{i},
s=k

v(S ∪ {i})

where the latter equality holds because of γ(n, k + 1) · n−1−k
k+1 = γ(n, k). ¿From the

latter inequality, together with the induction hypothesis (20), (21), (22) respectively,
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it follows that

ψi(N, v) ≥ fk(ψ, v, {i}) + gk+1(ψ, v, {i})

= fk−1(ψ, v, {i}) + γ(n, k) · [bk+1 − bk] ·
∑

S⊆N\{i},
s=k

v(S ∪ {i}) + gk+1(ψ, v, {i})

≥ fk−1(ψ, v, {i}) + γ(n, k) · [bn − bk] ·
∑

S⊆N\{i},
s=k

v(S ∪ {i})

= fk−1(ψ, v, {i}) + gk(ψ, v, {i})

This completes the backwards inductive proof of the claim (20). For k = 0 the claim
yields

ψi(N, v) ≥ f0(ψ, v, {i}) + g1(ψ, v, {i})

= γ(n, 0) · [b1 − b0] · v({i}) + γ(n, 1) · [bn − b1] ·
∑

j∈N\{i}
v({i, j})

=
b1
n
· v({i}) +

1− b1
n · (n− 1)

·
∑

j∈N\{i}
v({i, j}).

Note that v(S) ≥ 0 for all S ⊆ N by monotonicity of 〈N, v〉. Together with 0 ≤ b1 ≤
1, the latter inequality yields ψi(N, v) ≥ 0. This completes the proof of Theorem
3(ii). ��
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