1. Andrey A. Matskovskiy, German L. Zavorokhin, 2025 Days on Diffraction (DD), 2025, 1  crossref
  2. S. A. Nazarov, “Rayleigh Waves for Elliptic Systems in Domains with Periodic Boundaries”, Diff Equat, 58:5 (2022), 631  crossref
  3. A. O. Vatulyan, L. I. Parinova, “WAVE PROCESSES IN VISCOELASTIC TOPOGRAPHIC WAVEGUIDES”, Mech. Solids, 57:2 (2022), 244  crossref
  4. Vatulyan A.O. Parinova I L., “A Study of Wave Processes in Elastic Topographic Waveguides”, Acoust. Phys., 67:2 (2021), 101–107  crossref  isi
  5. Bakharev F.L. Nazarov I A., “Existence of the Discrete Spectrum in the Fichera Layers and Crosses of Arbitrary Dimension”, J. Funct. Anal., 281:4 (2021), 109071  crossref  mathscinet  isi
  6. Mahir HASANSOY, “Spectral Analysis Of Elastic Waveguides”, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 13:1 (2020), 43  crossref
  7. Pupyrev P.D., Nedospasov I.A., Mayer A.P., “Guided Acoustic Waves At the Intersection of Interfaces and Surfaces”, Ultrasonics, 95 (2019), 52–62  crossref  isi
  8. Wilde V M., Golub V M., Eremin A.A., “Experimental Observation of Theoretically Predicted Spectrum of Edge Waves in a Thick Elastic Plate With Facets”, Ultrasonics, 98 (2019), 88–93  crossref  isi
  9. Khalile M. Pankrashkin K., “Eigenvalues of Robin Laplacians in Infinite Sectors”, Math. Nachr., 291:5-6 (2018), 928–965  crossref  mathscinet  zmath  isi  scopus
  10. Zavorokhin G.L., Nazarov A.I., Nazarov S.A., “The Symmetric Mode of An Elastic Solid Wedge With the Opening Close to a Flat Angle”, Dokl. Phys., 63:12 (2018), 526–529  crossref  mathscinet  isi  scopus
  11. Pupyrev P.D., Lomonosov A.M., Mayer A.P., “Laser-generated ultrasonic pulse shapes at solid wedges”, Ultrasonics, 70 (2016), 75–83  crossref  isi  elib  scopus
  12. Pupyrev P.D., Lomonosov A.M., Nikodijevic A., Mayer A.P., “On the existence of guided acoustic waves at rectangular anisotropic edges”, Ultrasonics, 71 (2016), 278–287  crossref  isi  elib  scopus
  13. Hess P., Lomonosov A.M., Mayer A.P., “Laser-Based Linear and Nonlinear Guided Elastic Waves at Surfaces (2D) and Wedges (1D)”, Ultrasonics, 54:1 (2014), 39–55  crossref  isi  elib  scopus
  14. V. M. Babich, “On excitation coefficient of a wave propagating along the edge of an elastic wedge”, J. Math. Sci. (N. Y.), 214:3 (2016), 248–251  mathnet  crossref  mathscinet
  15. Pupyrev P.D., Lomonosov A.M., Hess P., Mayer A.P., “Symmetry Effects on Elastic Wedge Waves At Anisotropic Edges”, J. Appl. Phys., 115:24 (2014), 243504  crossref  adsnasa  isi  elib  scopus
  16. Sokolova E.S., Kovalev A.S., Mayer A.P., “Second-Order Nonlinearity of Wedge Acoustic Waves in Anisotropic Media”, Wave Motion, 50:2 (2013), 246–252  crossref  mathscinet  zmath  isi  elib  scopus
  17. S. A. Nazarov, “Discrete spectrum of cranked, branchy, and periodic waveguides”, St. Petersburg Math. J., 23:2 (2012), 351–379  mathnet  crossref  mathscinet  zmath  isi  elib  elib
  18. V. M. Babich, “A class of topographical waveguides”, St. Petersburg Math. J., 22:1 (2011), 73–79  mathnet  crossref  mathscinet  zmath  isi
  19. G. L. Zavorokhin, A. I. Nazarov, “On elastic waves in a wedge”, J. Math. Sci. (N. Y.), 175:6 (2011), 646–650  mathnet  crossref
  20. Kamotskii I. V., Kiselev A. P., “An energy approach to the proof of the existence of Rayleigh waves in an anisotropic elastic half-space”, J. Appl. Math. Mech., 73:4 (2009), 464–470  crossref  mathscinet  isi  elib  elib  scopus
1
2
Next