-
V. K. Chandrasekar, R. Gladwin Pradeep, R. Mohanasubha, M. Senthilvelan, M. Lakshmanan, “Method of deriving Lagrangian for two-dimensional systems”, Eur. Phys. J. Plus, 138:1 (2023)
-
Mustafa O., “N-Dimensional Pdm-Damped Harmonic Oscillators: Linearizability, and Exact Solvability”, Phys. Scr., 96:6 (2021), 065205
-
Mustafa O., “Isochronous N-Dimensional Nonlinear Pdm-Oscillators: Linearizability, Invariance and Exact Solvability”, Eur. Phys. J. Plus, 136:2 (2021), 249
-
Mustafa O., “N-Dimensional Pdm Non-Linear Oscillators: Linearizability and Euler-Lagrange Or Newtonian Invariance”, Phys. Scr., 95:6 (2020), 065214
-
Mustafa O., “Pdm Creation and Annihilation Operators of the Harmonic Oscillators and the Emergence of An Alternative Pdm-Hamiltonian”, Phys. Lett. A, 384:13 (2020), 126265
-
Mustafa O., Algadhi Z., “Position-Dependent Mass Momentum Operator and Minimal Coupling: Point Canonical Transformation and Isospectrality”, Eur. Phys. J. Plus, 134:5 (2019), 228
-
Shahram Dehdashti, Ali Mahdifar, Huaping Wang, “Coherent States of Position-Dependent Mass Oscillator”, Int J Theor Phys, 55:8 (2016), 3564
-
Dibakar Ghosh, Barnana Roy, “Nonlinear dynamics of classical counterpart of the generalized quantum nonlinear oscillator driven by position dependent mass”, Annals of Physics, 353 (2015), 222
-
Omar Mustafa, “Position-dependent mass Lagrangians: nonlocal transformations, Euler–Lagrange invariance and exact solvability”, J. Phys. A: Math. Theor., 48:22 (2015), 225206
-
Rami Ahmad El-Nabulsi, “A Generalized Nonlinear Oscillator From Non-Standard Degenerate Lagrangians and Its Consequent Hamiltonian Formalism”, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 84:4 (2014), 563
-
Manuel F. Rañada, “A quantum quasi-harmonic nonlinear oscillator with an isotonic term”, Journal of Mathematical Physics, 55:8 (2014)
-
R. Mohanasubha, M.I. Sabiya Shakila, M. Senthilvelan, “On the linearization of isochronous centre of a modified Emden equation with linear external forcing”, Communications in Nonlinear Science and Numerical Simulation, 19:4 (2014), 799
-
B Midya, B Roy, A Biswas, “Coherent state of a nonlinear oscillator and its revival dynamics”, Phys. Scr., 79:6 (2009), 065003
-
B Midya, B Roy, “A generalized quantum nonlinear oscillator”, J. Phys. A: Math. Theor., 42:28 (2009), 285301
-
Vadas Gintautas, Alfred W. Hübler, “Resonant forcing of nonlinear systems of differential equations”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18:3 (2008)
-
Á. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, “A maximally superintegrable system on an -dimensional space of nonconstant curvature”, Physica D: Nonlinear Phenomena, 237:4 (2008), 505
-
J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of a nonlinear oscillator as a model of the harmonic oscillator on spaces of constant curvature: One- and two-dimensional systems”, Phys. Atom. Nuclei, 71:5 (2008), 836
-
José F. Cariñena, Manuel F. Rañada, Mariano Santander, “A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog”, SIGMA, 3 (2007), 030, 23 pp.
-
José F. Cariñena, Manuel F. Rañada, Mariano Santander, “A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour”, Annals of Physics, 322:2 (2007), 434
-
J. F. Cariñena, M. F. Rañada, M. Santander, “Three superintegrable two-dimensional oscillators: Superintegrability, nonlinearity, and curvature”, Phys. Atom. Nuclei, 70:3 (2007), 505