1. V. K. Chandrasekar, R. Gladwin Pradeep, R. Mohanasubha, M. Senthilvelan, M. Lakshmanan, “Method of deriving Lagrangian for two-dimensional systems”, Eur. Phys. J. Plus, 138:1 (2023)  crossref
  2. Mustafa O., “N-Dimensional Pdm-Damped Harmonic Oscillators: Linearizability, and Exact Solvability”, Phys. Scr., 96:6 (2021), 065205  crossref  isi  scopus
  3. Mustafa O., “Isochronous N-Dimensional Nonlinear Pdm-Oscillators: Linearizability, Invariance and Exact Solvability”, Eur. Phys. J. Plus, 136:2 (2021), 249  crossref  isi  scopus
  4. Mustafa O., “N-Dimensional Pdm Non-Linear Oscillators: Linearizability and Euler-Lagrange Or Newtonian Invariance”, Phys. Scr., 95:6 (2020), 065214  crossref  isi  scopus
  5. Mustafa O., “Pdm Creation and Annihilation Operators of the Harmonic Oscillators and the Emergence of An Alternative Pdm-Hamiltonian”, Phys. Lett. A, 384:13 (2020), 126265  crossref  mathscinet  zmath  isi  scopus
  6. Mustafa O., Algadhi Z., “Position-Dependent Mass Momentum Operator and Minimal Coupling: Point Canonical Transformation and Isospectrality”, Eur. Phys. J. Plus, 134:5 (2019), 228  crossref  isi  scopus
  7. Shahram Dehdashti, Ali Mahdifar, Huaping Wang, “Coherent States of Position-Dependent Mass Oscillator”, Int J Theor Phys, 55:8 (2016), 3564  crossref
  8. Dibakar Ghosh, Barnana Roy, “Nonlinear dynamics of classical counterpart of the generalized quantum nonlinear oscillator driven by position dependent mass”, Annals of Physics, 353 (2015), 222  crossref
  9. Omar Mustafa, “Position-dependent mass Lagrangians: nonlocal transformations, Euler–Lagrange invariance and exact solvability”, J. Phys. A: Math. Theor., 48:22 (2015), 225206  crossref
  10. Rami Ahmad El-Nabulsi, “A Generalized Nonlinear Oscillator From Non-Standard Degenerate Lagrangians and Its Consequent Hamiltonian Formalism”, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 84:4 (2014), 563  crossref
  11. Manuel F. Rañada, “A quantum quasi-harmonic nonlinear oscillator with an isotonic term”, Journal of Mathematical Physics, 55:8 (2014)  crossref
  12. R. Mohanasubha, M.I. Sabiya Shakila, M. Senthilvelan, “On the linearization of isochronous centre of a modified Emden equation with linear external forcing”, Communications in Nonlinear Science and Numerical Simulation, 19:4 (2014), 799  crossref
  13. B Midya, B Roy, A Biswas, “Coherent state of a nonlinear oscillator and its revival dynamics”, Phys. Scr., 79:6 (2009), 065003  crossref
  14. B Midya, B Roy, “A generalized quantum nonlinear oscillator”, J. Phys. A: Math. Theor., 42:28 (2009), 285301  crossref
  15. Vadas Gintautas, Alfred W. Hübler, “Resonant forcing of nonlinear systems of differential equations”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 18:3 (2008)  crossref
  16. Á. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, “A maximally superintegrable system on an -dimensional space of nonconstant curvature”, Physica D: Nonlinear Phenomena, 237:4 (2008), 505  crossref
  17. J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of a nonlinear oscillator as a model of the harmonic oscillator on spaces of constant curvature: One- and two-dimensional systems”, Phys. Atom. Nuclei, 71:5 (2008), 836  crossref
  18. José F. Cariñena, Manuel F. Rañada, Mariano Santander, “A Super-Integrable Two-Dimensional Non-Linear Oscillator with an Exactly Solvable Quantum Analog”, SIGMA, 3 (2007), 030, 23 pp.  mathnet  crossref  mathscinet  zmath
  19. José F. Cariñena, Manuel F. Rañada, Mariano Santander, “A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour”, Annals of Physics, 322:2 (2007), 434  crossref
  20. J. F. Cariñena, M. F. Rañada, M. Santander, “Three superintegrable two-dimensional oscillators: Superintegrability, nonlinearity, and curvature”, Phys. Atom. Nuclei, 70:3 (2007), 505  crossref
1
2
Next