1. C J Isham, A C Kakas, Class Quantum Grav, 1:6 (1984), 633  crossref  mathscinet  zmath  adsnasa  isi
  2. N. N. Bogolyubov, S. G. Gindikin, A. A. Kirillov, A. N. Kolmogorov, S. P. Novikov, L. D. Faddeev, “Izrail' Moiseevich Gel'fand (on his seventieth birthday)”, Russian Math. Surveys, 38:6 (1983), 145–153  mathnet  crossref  mathscinet  zmath  adsnasa
  3. Daoxing Xia, Lecture Notes in Physics, 153, Mathematical Problems in Theoretical Physics, 1982, 324  crossref
  4. Kiyosato Okamoto, Takatoshi Sakurai, “On a certain class of irreducible unitary representations of the infinite-dimensional rotation group. II”, Hiroshima Math. J., 12:2 (1982)  crossref
  5. Kiyosato Okamoto, Takatoshi Sakurai, “An analogue of Peter-Weyl theorem for the infinite-dimensional unitary group”, Hiroshima Math. J., 12:3 (1982)  crossref
  6. J. Kupsch, W. Rühl, “On the Quantization of Hydrodynamics”, Fortschr Phys, 27:11-12 (1979), 581  crossref  mathscinet  isi
  7. A. D. Gvishiani, “Representations of the group of local shifts of the space $k^m$, where $k$ is a local non-Archimedean field”, Funct. Anal. Appl., 13:3 (1979), 214–215  mathnet  crossref  mathscinet  zmath
  8. David Shale, “Random functions of Poisson type”, Journal of Functional Analysis, 33:1 (1979), 1  crossref
  9. R. Vilela Mendes, Lecture Notes in Physics, 94, Group Theoretical Methods in Physics, 1979, 296  crossref
  10. E. T. Shavgulidze, “An example of a measure quasi-invariant under the action of the diffeomorphism group of the circle”, Funct. Anal. Appl., 12:3 (1978), 203–207  mathnet  crossref  mathscinet  zmath
  11. A. B. Borisov, “Unitary representations of the algebra of the general covariance group”, Theoret. and Math. Phys., 33:3 (1977), 1116–1118  mathnet  crossref  zmath
  12. R. S. Ismagilov, “Unitary representations of groups of measure-preserving diffeomorphisms”, Funct. Anal. Appl., 11:3 (1977), 229–230  mathnet  crossref  mathscinet  zmath
  13. B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties”, Russian Math. Surveys, 31:1 (1976), 59–146  mathnet  crossref  mathscinet  zmath
  14. A. N. Tyurin, “The geometry of the Poincaré theta-divisor of a Prym variety”, Math. USSR-Izv., 9:5 (1975), 951–986  mathnet  crossref  mathscinet  zmath
Previous
1
2
3
4