1. Sergey Kabanikhin, Maxim Shishlenin, Nikita Novikov, Nikita Prokhoshin, “Spectral, Scattering and Dynamics: Gelfand–Levitan–Marchenko–Krein Equations”, Mathematics, 11:21 (2023), 4458  crossref
  2. A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  3. Evgeny Lakshtanov, Boris Vainberg, “Recovery of L
    p -potential in the plane”, Journal of Inverse and Ill-posed Problems, 25:5 (2017), 633  crossref
  4. A. D. Agaltsov, R. G. Novikov, “Riemann–Hilbert problem approach for two-dimensional flow inverse scattering”, Journal of Mathematical Physics, 55:10 (2014)  crossref
  5. V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, “Two-dimensional stationary Schrödinger equation via the ∂¯-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation”, Journal of Mathematical Physics, 51:9 (2010)  crossref
  6. R. G. Novikov, “The $\bar{\partial}$ -Approach to Monochromatic Inverse Scattering in Three Dimensions”, J Geom Anal, 18:2 (2008), 612  crossref
  7. Rob Hagemans, Jean-Sébastien Caux, “Deformed strings in the Heisenberg model”, J. Phys. A: Math. Theor., 40:49 (2007), 14605  crossref
  8. N. V. Alekseenko, “Solution of the Three-Dimensional Inverse Acoustic Scattering Problem on the Basis of the Novikov–Henkin Algorithm”, Acoust. Phys., 51:4 (2005), 367  crossref
  9. V. A. Burov, I. M. Grishina, O. I. Lapshenkina, S. A. Morozov, O. D. Rumyantseva, E. G. Sukhov, “Reconstruction of the fine structure of an acoustic scatterer against the distorting influence of its large-scale inhomogeneities”, Acoust. Phys., 49:6 (2003), 627  crossref
  10. V. A. Burov, O. D. Rumyantseva, “Uniqueness and stability of the solution to an inverse acoustic scattering problem”, Acoust. Phys., 49:5 (2003), 496  crossref
  11. R G Novikov, “On the range characterization for the two-dimensional attenuated x-ray transformation”, Inverse Problems, 18:3 (2002), 677  crossref
  12. P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Russian Math. Surveys, 55:6 (2000), 1015–1083  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  13. A. S. Starkov, “Transform operators in a two-dimensional inverse problem for a finite domain”, J. Math. Sci. (New York), 91:2 (1998), 2866–2872  mathnet  mathnet  crossref
  14. A.G. Ramm, “Can a constant be the fixed-energy scattering amplitude for an integrable local potential?”, Physics Letters A, 154:1-2 (1991), 35  crossref
  15. R. G. Novikov, “Multidimensional inverse spectral problem for the equation $-\Delta\psi+(v(x)-Eu(x))\psi=0$”, Funct. Anal. Appl., 22:4 (1988), 263–272  mathnet  crossref  mathscinet  zmath  isi
  16. V. D. Lipovskii, A. V. Shirokov, “$2+1$ Toda chain. I. Inverse scattering method”, Theoret. and Math. Phys., 75:3 (1988), 555–566  mathnet  crossref  mathscinet  isi
  17. A. P. Katchalov, Ya. V. Kurylev, “Asymptotics of the Jost-function for the two-dimensional Schrödinger operator”, J. Soviet Math., 55:3 (1991), 1712–1717  mathnet  mathnet  crossref
  18. R. G. Novikov, G. M. Henkin, “The $\bar\partial$-equation in the multidimensional inverse scattering problem”, Russian Math. Surveys, 42:3 (1987), 109–180  mathnet  crossref  mathscinet  zmath  adsnasa  isi
  19. P. G. Grinevich, “Rational solitons of the Veselov–Novikov equations are reflectionless two-dimensional potentials at fixed energy”, Theoret. and Math. Phys., 69:2 (1986), 1170–1172  mathnet  crossref  mathscinet  zmath  isi
  20. P. G. Grinevich, S. V. Manakov, “Inverse scattering problem for the two-dimensional Schrödinger operator, the $\bar\partial$-method and nonlinear equations”, Funct. Anal. Appl., 20:2 (1986), 94–103  mathnet  crossref  mathscinet  zmath
1
2
Next