1. McEneaney W.M., “Convergence rate for a curse-of-dimensionality-free method for Hamilton–Jacobi–Bellman PDEs represented as maxima of quadratic forms”, SIAM J. Control Optim., 48:4 (2009), 2651–2685  crossref  mathscinet  isi
  2. William M. McEneaney, L. Jonathan Kluberg, “Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs”, SIAM J Control Optim, 48:5 (2009), 3052–3079  crossref  mathscinet  isi
  3. D. McCaffrey, “Policy Iteration and the Max-Plus Finite Element Method”, SIAM J Control Optim, 47:6 (2008), 2912  crossref  mathscinet  zmath  isi
  4. William M. McEneaney, “A new fundamental solution for differential Riccati equations arising in control”, Automatica, 44:4 (2008), 920  crossref
  5. William M. McEneaney, Ameet Deshpande, Stephane Gaubert, 2008 American Control Conference, 2008, 4684  crossref
  6. William M. McEneaney, “A Curse-of-Dimensionality-Free Numerical Method for Solution of Certain HJB PDEs”, SIAM J Control Optim, 46:4 (2007), 1239  crossref  mathscinet  zmath  isi
  7. M. Gondran, M. Minoux, “Dioïds and semirings: Links to fuzzy sets and other applications”, Fuzzy Sets and Systems, 158:12 (2007), 1273  crossref
  8. William M. McEneaney, “Max-plus summation of Fenchel-transformed semigroups for solution of nonlinear Bellman equations”, Systems & Control Letters, 56:4 (2007), 255  crossref
  9. William M. McEneaney, 2007 46th IEEE Conference on Decision and Control, 2007, 4761  crossref
  10. William M. McEneaney, Proceedings of the 45th IEEE Conference on Decision and Control, 2006, 967  crossref
  11. William M. McEneaney, Lecture Notes in Control and Information Sciences, 280, Stochastic Theory and Control, 2006, 335  crossref
  12. Г. Л. Литвинов, “Деквантование Маслова, идемпотентная и тропическая математика: краткое введение”, Теория представлений, динамические системы, комбинаторные и алгоритмические методы. XIII, Зап. научн. сем. ПОМИ, 326, ПОМИ, СПб., 2005, 145–182  mathnet  mathscinet  zmath  elib; G. L. Litvinov, “The Maslov dequantization, idempotent and tropical mathematics: a brief introduction”, J. Math. Sci. (N. Y.), 140:3 (2007), 426–444  crossref  elib
  13. Litvinov G.L., “The Maslov dequantization, idempotent and tropical mathematics: a very brief introduction”, Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics Series, 377, 2005, 1–17  isi
  14. William M. McEneaney, “A CURSE-OF-DIMENSIONALITY-FREE NUMERICAL METHOD FOR A CLASS OF HJB PDE'S”, IFAC Proceedings Volumes, 38:1 (2005), 532  crossref
  15. W.M. McEneaney, Proceedings of the 44th IEEE Conference on Decision and Control, 2005, 42  crossref
  16. C.-S. Huang, S. Wang, K.L. Teo, “On application of an alternating direction method to Hamilton–Jacobin–Bellman equations”, Journal of Computational and Applied Mathematics, 166:1 (2004), 153  crossref
  17. W.M. McEneaney, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, 1152  crossref
  18. W.M. McEneaney, “Max-plus eigenvector representations for solution of nonlinear H/sub ∞/ problems: Basic concepts”, IEEE Trans Automat Contr, 48:7 (2003), 1150  crossref  mathscinet  isi
  19. P.M. Dower, W.M. McEneaney, 3, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), 2003, 2573  crossref
  20. William M. McEneaney, “Max-Plus Methods for Nonlinear H ∞ Control: Operating in the Transform Space”, IFAC Proceedings Volumes, 36:11 (2003), 579  crossref
Предыдущая
1
2
3
4
Следующая