|
2-years impact-factor Math-Net.Ru of «Algebra i Analiz» journal, 2015
2-years impact-factor Math-Net.Ru of the journal in 2015 is calculated
as the number of citations in 2015 to the scientific papers published during
2013–2014.
The table below contains the list of citations in 2015 to the papers
published in 2013–2014. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2015 |
0.542 |
96 |
52 |
32 |
9.6% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
M. Santacesaria, “A Hölder-logarithmic stability estimate for an inverse problem in two dimensions”, J. Inverse Ill-Posed Probl., 23:1 (2015), 51–73  |
→ |
Stability estimates for recovering the potential by the impedance boundary map M. I. Isaev, R. G. Novikov Algebra i Analiz, 25:1 (2013), 37–63
|
|
2. |
O. A. Manita, “Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXVI, Zap. nauchn. sem. POMI, 437, POMI, SPb., 2015, 184–206  |
→ |
Nonlinear parabolic equations for measures O. A. Manita, S. V. Shaposhnikov Algebra i Analiz, 25:1 (2013), 64–93
|
3. |
O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equatio”, Nonlinear Anal., 128 (2015), 199–226  |
→ |
Nonlinear parabolic equations for measures O. A. Manita, S. V. Shaposhnikov Algebra i Analiz, 25:1 (2013), 64–93
|
4. |
O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Uniqueness of a probability solution of a nonlinear Fokker–Planck–Kolmogorov equation”, Dokl. Math., 91:2 (2015), 142–146  |
→ |
Nonlinear parabolic equations for measures O. A. Manita, S. V. Shaposhnikov Algebra i Analiz, 25:1 (2013), 64–93
|
|
5. |
B. A. Plamenevskii, A. S. Poretskii, O. V. Sarafanov, “O vychislenii volnovodnoi matritsy rasseyaniya dlya sistemy Maksvella”, Funkts. analiz i ego pril., 49:1 (2015), 93–96  |
→ |
The Maxwell system in waveguides with several cylindrical ends B. A. Plamenevskiĭ, A. S. Poretskiĭ Algebra i Analiz, 25:1 (2013), 94–155
|
|
6. |
A. Michelangeli, “Global well-posedness of the magnetic Hartree equation with non-Strichartz external fields”, Nonlinearity, 28:8 (2015), 2743–2765  |
→ |
Schr\"odinger equations with time-dependent strong magnetic fields D. Aiba, K. Yajima Algebra i Analiz, 25:2 (2013), 37–62
|
|
7. |
J. I. Díaz, T. Mingazzini, “Free boundaries touching the boundary of the domain for some reaction-diffusion problems”, Nonlinear Anal., 119 (2015), 275–294  |
→ |
Uniform estimates near the initial state for solutions of the two-phase parabolic problem D. E. Apushkinskaya, N. N. Uraltseva Algebra i Analiz, 25:2 (2013), 63–74
|
8. |
D. E. Apushkinskaya, N. N. Uraltseva, “On regularity properties of solutions to the hysteresis-type problem”, Interface Free Bound., 17:1 (2015), 93–115  |
→ |
Uniform estimates near the initial state for solutions of the two-phase parabolic problem D. E. Apushkinskaya, N. N. Uraltseva Algebra i Analiz, 25:2 (2013), 63–74
|
|
9. |
J.-F. Bony, F. Herau, L. Michel, “Tunnel effect for semiclassical random walks”, Anal. PDE, 8:2 (2015), 289–332  |
→ |
Supersymmetric structures for second order differential operators F. Hérau, M. Hitrik, J. Sjöstrand Algebra i Analiz, 25:2 (2013), 125–154
|
10. |
Johannes Sjöstrand, Abel Symposia, 9, Operator-Related Function Theory and Time-Frequency Analysis, 2015, 173  |
→ |
Supersymmetric structures for second order differential operators F. Hérau, M. Hitrik, J. Sjöstrand Algebra i Analiz, 25:2 (2013), 125–154
|
|
11. |
J. Krieger, J. Nahas, “Instability of type II blow up for the quintic nonlinear wave equation on $\mathbb R^{3+1}$”, Bull. Soc. Math. France, 143:2 (2015), 339–355  |
→ |
Nondispersive vanishing and blow up at infinity for the energy critical nonlinear Schr\"odinger equation in~$\mathbb R^3$ C. Ortoleva, G. Perelman Algebra i Analiz, 25:2 (2013), 162–192
|
|
12. |
A. Fedotov, F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Comm. Math. Phys., 334:2 (2015), 1083–1099  |
→ |
Monodromization method in the theory of almost-periodic equations A. A. Fedotov Algebra i Analiz, 25:2 (2013), 203–235
|
13. |
A. A. Fedotov, E. V. Schetka, “Kompleksnyi metod VKB dlya raznostnykh uravnenii v ogranichennykh oblastyakh”, Matematicheskie voprosy teorii rasprostraneniya voln. 45, Zap. nauchn. sem. POMI, 438, POMI, SPb., 2015, 236–254  |
→ |
Monodromization method in the theory of almost-periodic equations A. A. Fedotov Algebra i Analiz, 25:2 (2013), 203–235
|
|
14. |
D. R. Yafaev, “On finite rank Hankel operators”, J. Funct. Anal., 268:7 (2015), 1808–1839  |
→ |
Spectral and scattering theory for perturbations of the Carleman operator D. R. Yafaev Algebra i Analiz, 25:2 (2013), 251–278
|
15. |
A. Pushnitski, D. Yafaev, “Spectral and scattering theory of self-adjoint Hankel operators with piecewise continuous symbols”, J. Operator Theory, 74:2 (2015), 417–455  |
→ |
Spectral and scattering theory for perturbations of the Carleman operator D. R. Yafaev Algebra i Analiz, 25:2 (2013), 251–278
|
16. |
D. R. Yafaev, “Criteria for Hankel operators to be sign-definite”, Anal. PDE, 8:1 (2015), 183–221  |
→ |
Spectral and scattering theory for perturbations of the Carleman operator D. R. Yafaev Algebra i Analiz, 25:2 (2013), 251–278
|
|
17. |
A. N. Medvedev, “Padenie gladkosti vneshnei funktsii v sravnenii s gladkostyu ee modulya pri dopolnitelnykh ogranicheniyakh na velichinu granichnoi funktsii”, Issledovaniya po lineinym operatoram i teorii funktsii. 43, Zap. nauchn. sem. POMI, 434, POMI, SPb., 2015, 101–115  |
→ |
Local smoothness of an analytic function compared to the smoothness of its modulus A. V. Vasin, S. V. Kislyakov, A. N. Medvedev Algebra i Analiz, 25:3 (2013), 52–85
|
|
18. |
A. I. Nazarov, Yu. P. Petrova, “Asimptotika malykh uklonenii v gilbertovoi norme dlya protsessov Katsa–Kifera–Volfovitsa”, Teoriya veroyatn. i ee primen., 60:3 (2015), 482–505  |
→ |
Comparison theorems for the small ball probabilities of the Green Gaussian processes in weighted $L_2$-norms A. I. Nazarov, R. S. Pusev Algebra i Analiz, 25:3 (2013), 131–146
|
|
19. |
J. P. Chen, S. Molchanov, A. Teplyaev, “Spectral dimension and Bohr's formula for Schrtsdinger operators on unbounded fractal spaces”, J. Phys. A, 48:39 (2015), 395203, 27 pp.  |
→ |
On spectral estimates for the Schr\"odinger operators in global dimension~2 G. Rozenblum, M. Solomyak Algebra i Analiz, 25:3 (2013), 185–199
|
|
20. |
A. N. Medvedev, “Padenie gladkosti vneshnei funktsii v sravnenii s gladkostyu ee modulya pri dopolnitelnykh ogranicheniyakh na velichinu granichnoi funktsii”, Issledovaniya po lineinym operatoram i teorii funktsii. 43, Zap. nauchn. sem. POMI, 434, POMI, SPb., 2015, 101–115  |
→ |
Sufficient condition for Hölder smoothness of a function N. A. Shirokov Algebra i Analiz, 25:3 (2013), 200–206
|
|
|
Total publications: |
1949 |
Scientific articles: |
1846 |
Authors: |
1408 |
Citations: |
14230 |
Cited articles: |
1464 |
 |
Impact Factor Web of Science |
|
for 2023:
0.700 |
|
for 2022:
0.800 |
|
for 2021:
0.934 |
|
for 2020:
0.804 |
|
for 2019:
0.800 |
|
for 2018:
1.000 |
|
for 2017:
0.604 |
|
for 2016:
0.438 |
|
for 2015:
0.485 |
|
for 2014:
0.641 |
|
for 2013:
0.561 |
|
for 2012:
0.460 |
|
for 2011:
0.287 |
|
for 2010:
0.347 |
 |
Scopus Metrics |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.425 |
|
2023 |
SJR |
0.350 |
|
2022 |
SJR |
0.431 |
|
2021 |
SJR |
0.325 |
|
2020 |
SJR |
0.328 |
|
2019 |
SJR |
0.458 |
|
2018 |
CiteScore |
0.580 |
|
2018 |
SJR |
0.632 |
|
2017 |
CiteScore |
0.340 |
|
2017 |
SNIP |
0.519 |
|
2017 |
SJR |
0.335 |
|
2016 |
CiteScore |
0.230 |
|
2016 |
SNIP |
0.398 |
|
2016 |
SJR |
0.215 |
|
2015 |
CiteScore |
0.280 |
|
2015 |
SNIP |
0.722 |
|
2015 |
IPP |
0.245 |
|
2015 |
SJR |
0.366 |
|
2014 |
CiteScore |
0.330 |
|
2014 |
SNIP |
0.690 |
|
2014 |
IPP |
0.336 |
|
2014 |
SJR |
0.317 |
|
2013 |
SNIP |
0.591 |
|
2013 |
IPP |
0.306 |
|
2013 |
SJR |
0.277 |
|
2012 |
SNIP |
0.728 |
|
2012 |
IPP |
0.260 |
|
2012 |
SJR |
0.205 |
|