|
2-years impact-factor Math-Net.Ru of «Algebra i Analiz» journal, 2018
2-years impact-factor Math-Net.Ru of the journal in 2018 is calculated
as the number of citations in 2018 to the scientific papers published during
2016–2017.
The table below contains the list of citations in 2018 to the papers
published in 2016–2017. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2018 |
0.800 |
90 |
72 |
35 |
5.6% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
G. K. Ryabov, “Ob otdelimosti kolets Shura nad abelevymi $p$-gruppami”, Algebra i logika, 57:1 (2018), 73–101  |
→ |
On the separability problem for circulant S-rings S. Evdokimov, I. Ponomarenko Algebra i Analiz, 28:1 (2016), 32–51
|
2. |
G. K. Ryabov, “Otdelimost kolets Shura nad abelevoi gruppoi poryadka $4p$”, Voprosy teorii predstavlenii algebr i grupp. 33, Zap. nauchn. sem. POMI, 470, POMI, SPb., 2018, 179–193  |
→ |
On the separability problem for circulant S-rings S. Evdokimov, I. Ponomarenko Algebra i Analiz, 28:1 (2016), 32–51
|
|
3. |
Kh. K. Ishkin, “Usloviya lokalizatsii spektra operatorov, ne blizkikh k samosopryazhënnym”, Dokl. RAN, 479:5 (2018), 497–500  |
→ |
Localization criterion for the spectrum of the Sturm–Liouville operator on a curve Kh. K. Ishkin Algebra i Analiz, 28:1 (2016), 52–88
|
4. |
A. A. Golubkov, “Obratnaya zadacha dlya operatorov Shturma–Liuvillya v kompleksnoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 18:2 (2018), 144–156  |
→ |
Localization criterion for the spectrum of the Sturm–Liouville operator on a curve Kh. K. Ishkin Algebra i Analiz, 28:1 (2016), 52–88
|
5. |
Kh. K. Ishkin, A. V. Rezbaev, “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Kompleksnyi analiz, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 84–93  |
→ |
Localization criterion for the spectrum of the Sturm–Liouville operator on a curve Kh. K. Ishkin Algebra i Analiz, 28:1 (2016), 52–88
|
|
6. |
T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215  |
→ |
Homogenization of high order elliptic operators with periodic coefficients A. A. Kukushkin, T. A. Suslina Algebra i Analiz, 28:1 (2016), 89–149
|
7. |
W. Niu, Zh. Shen, Ya. Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, J. Funct. Anal., 274:8 (2018), 2356–2398  |
→ |
Homogenization of high order elliptic operators with periodic coefficients A. A. Kukushkin, T. A. Suslina Algebra i Analiz, 28:1 (2016), 89–149
|
8. |
W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229  |
→ |
Homogenization of high order elliptic operators with periodic coefficients A. A. Kukushkin, T. A. Suslina Algebra i Analiz, 28:1 (2016), 89–149
|
|
9. |
R. Preusser, “Sandwich classification for $O _{2n+1}(R)$ and $U_{2n+1}(R,\Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571  |
→ |
Decomposition of transvections: an algebro-geometric approach V. A. Petrov Algebra i Analiz, 28:1 (2016), 150–157
|
10. |
N. A. Vavilov, “Towards the reverse decomposition of unipotents”, Voprosy teorii predstavlenii algebr i grupp. 33, Zap. nauchn. sem. POMI, 470, POMI, SPb., 2018, 21–37  |
→ |
Decomposition of transvections: an algebro-geometric approach V. A. Petrov Algebra i Analiz, 28:1 (2016), 150–157
|
11. |
Raimund Preusser, “Sandwich classification for GL
n
(R), O2n
(R) and U2n
(R,Λ) revisited”, Journal of Group Theory, 21:1 (2018), 21  |
→ |
Decomposition of transvections: an algebro-geometric approach V. A. Petrov Algebra i Analiz, 28:1 (2016), 150–157
|
|
12. |
P. Ivanisvili, D. M. Stolyarov, I. V. Vasyunin, P. B. Zatitskiy, Bellman function for extremal problems in BMO II: evolution, Mem. Am. Math. Soc., 255, no. 1220, 2018, v+133 pp.  |
→ |
The John–Nirenberg constant of $\mathrm{BMO}^p$, $p>2$ V. Vasyunin, L. Slavin Algebra i Analiz, 28:2 (2016), 72–96
|
|
13. |
O. A. Ivanova, S. N. Melikhov, “Kommutant operatora Pomme v prostranstve tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi pryamoi”, Vladikavk. matem. zhurn., 20:3 (2018), 48–56  |
→ |
On operators which commute with the Pommiez type operator in weighted spaces of entire functions O. A. Ivanova, S. N. Melikhov Algebra i Analiz, 28:2 (2016), 114–137
|
14. |
O. A. Ivanova, S. N. Melikhov, “O topologicheskikh algebrakh analiticheskikh funktsionalov s umnozheniem, opredelyaemym sdvigami”, Vestn. SamU. Estestvennonauchn. ser., 24:3 (2018), 14–22  |
→ |
On operators which commute with the Pommiez type operator in weighted spaces of entire functions O. A. Ivanova, S. N. Melikhov Algebra i Analiz, 28:2 (2016), 114–137
|
15. |
P. A. Ivanov, S. N. Melikhov, “Operator Pomme v prostranstvakh analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Kompleksnyi analiz, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 55–68  |
→ |
On operators which commute with the Pommiez type operator in weighted spaces of entire functions O. A. Ivanova, S. N. Melikhov Algebra i Analiz, 28:2 (2016), 114–137
|
|
16. |
Gert-Martin Greuel, Christoph Lossen, Eugenii Shustin, Springer Monographs in Mathematics, Singular Algebraic Curves, 2018, 333  |
→ |
Real algebraic and pseudoholomorphic curves on the quadratic cone and smoothings of singularity $X_{21}$ S. Yu. Orevkov, E. I. Shustin Algebra i Analiz, 28:2 (2016), 138–186
|
|
17. |
W. Niu, Zh. Shen, Ya. Xu, “Convergence rates and interior estimates in homogenization of higher order elliptic systems”, J. Funct. Anal., 274:8 (2018), 2356–2398  |
→ |
Homogenization estimates of operator type for fourth order elliptic equations S. E. Pastukhova Algebra i Analiz, 28:2 (2016), 204–226
|
18. |
T. A. Suslina, “Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients”, Complex Var. Elliptic Equ., 63:7-8, SI (2018), 1185–1215  |
→ |
Homogenization estimates of operator type for fourth order elliptic equations S. E. Pastukhova Algebra i Analiz, 28:2 (2016), 204–226
|
19. |
E. Pruchnicki, “Homogenization of a second order plate model”, Math. Mech. Solids, 23:9 (2018), 1323–1332  |
→ |
Homogenization estimates of operator type for fourth order elliptic equations S. E. Pastukhova Algebra i Analiz, 28:2 (2016), 204–226
|
20. |
W. Niu, Ya. Xu, “Convergence rates in homogenization of higher-order parabolic systems”, Discret. Contin. Dyn. Syst., 38:8 (2018), 4203–4229  |
→ |
Homogenization estimates of operator type for fourth order elliptic equations S. E. Pastukhova Algebra i Analiz, 28:2 (2016), 204–226
|
|
|
Total publications: |
1949 |
Scientific articles: |
1846 |
Authors: |
1408 |
Citations: |
14230 |
Cited articles: |
1464 |
 |
Impact Factor Web of Science |
|
for 2023:
0.700 |
|
for 2022:
0.800 |
|
for 2021:
0.934 |
|
for 2020:
0.804 |
|
for 2019:
0.800 |
|
for 2018:
1.000 |
|
for 2017:
0.604 |
|
for 2016:
0.438 |
|
for 2015:
0.485 |
|
for 2014:
0.641 |
|
for 2013:
0.561 |
|
for 2012:
0.460 |
|
for 2011:
0.287 |
|
for 2010:
0.347 |
 |
Scopus Metrics |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.425 |
|
2023 |
SJR |
0.350 |
|
2022 |
SJR |
0.431 |
|
2021 |
SJR |
0.325 |
|
2020 |
SJR |
0.328 |
|
2019 |
SJR |
0.458 |
|
2018 |
CiteScore |
0.580 |
|
2018 |
SJR |
0.632 |
|
2017 |
CiteScore |
0.340 |
|
2017 |
SNIP |
0.519 |
|
2017 |
SJR |
0.335 |
|
2016 |
CiteScore |
0.230 |
|
2016 |
SNIP |
0.398 |
|
2016 |
SJR |
0.215 |
|
2015 |
CiteScore |
0.280 |
|
2015 |
SNIP |
0.722 |
|
2015 |
IPP |
0.245 |
|
2015 |
SJR |
0.366 |
|
2014 |
CiteScore |
0.330 |
|
2014 |
SNIP |
0.690 |
|
2014 |
IPP |
0.336 |
|
2014 |
SJR |
0.317 |
|
2013 |
SNIP |
0.591 |
|
2013 |
IPP |
0.306 |
|
2013 |
SJR |
0.277 |
|
2012 |
SNIP |
0.728 |
|
2012 |
IPP |
0.260 |
|
2012 |
SJR |
0.205 |
|