|
2-years impact-factor Math-Net.Ru of «Algebra i Analiz» journal, 2019
2-years impact-factor Math-Net.Ru of the journal in 2019 is calculated
as the number of citations in 2019 to the scientific papers published during
2017–2018.
The table below contains the list of citations in 2019 to the papers
published in 2017–2018. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2019 |
0.752 |
101 |
76 |
44 |
6.6% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
S. Kryzhevich, E. Stepanov, “The saga of a fish: from a survival guide to closing lemmas”, J. Differ. Equ., 267:6 (2019), 3442–3474  |
→ |
A survival guide for feeble fish D. Burago, S. Ivanov, A. Novikov Algebra i Analiz, 29:1 (2017), 49–59
|
|
2. |
A. Brothier, V. F. R. Jones, “Pythagorean representations of thompson's groups”, J. Funct. Anal., 277:7 (2019), 2442–2469  |
→ |
On the stabilizers of finite sets of numbers in the R.~Thompson group~$F$ G. Golan, M. Sapir Algebra i Analiz, 29:1 (2017), 70–110
|
|
3. |
D. Lombardo, “Computing the geometric endomorphism ring of a genus-2 Jacobian”, Math. Comput., 88:316 (2019), 889–929  |
→ |
Endomorphism rings of reductions of elliptic curves and Abelian varieties Yu. G. Zarhin Algebra i Analiz, 29:1 (2017), 110–144
|
|
4. |
R. Hunter, “Monge-Ampere iteration”, Sel. Math.-New Ser., 25:5 (2019), UNSP 73  |
→ |
Affine hemispheres of elliptic type B. Klartag Algebra i Analiz, 29:1 (2017), 145–188
|
|
5. |
V. Milman, L. Rotem, “Weighted geometric means of convex bodies”, Functional Analysis and Geometry: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 733, eds. P. Kuchment, E. Semenov, Amer. Math. Soc., 2019, 233–249  |
→ |
``Irrational'' constructions in convex geometry V. Milman, L. Rotem Algebra i Analiz, 29:1 (2017), 222–236
|
|
6. |
A. Deleporte, “Low-energy spectrum of toeplitz operators: the case of wells”, J. Spectr. Theory, 9:1 (2019), 79–125  |
→ |
Sharp correspondence principle and quantum measurements L. Charles, L. Polterovich Algebra i Analiz, 29:1 (2017), 237–278
|
|
7. |
N. Lebedeva, A. Petrunin, V. Zolotov, “Bipolar comparison”, Geom. Funct. Anal., 29:1 (2019), 258–282  |
→ |
In search of a five-point Alexandrov type condition A. Petrunin Algebra i Analiz, 29:1 (2017), 296–298
|
|
8. |
M. I. Belishev, S. A. Simonov, “Volnovaya model metricheskikh prostranstv”, Funkts. analiz i ego pril., 53:2 (2019), 3–10  |
→ |
Wave model of the Sturm–Liouville operator on the half-line M. I. Belishev, S. A. Siminov Algebra i Analiz, 29:2 (2017), 3–33
|
9. |
M. I. Belishev, S. A. Simonov, “Ob evolyutsionnoi dinamicheskoi sisteme pervogo poryadka s granichnym upravleniem”, Matematicheskie voprosy teorii rasprostraneniya voln. 49, Zap. nauchn. sem. POMI, 483, POMI, SPb., 2019, 41–54  |
→ |
Wave model of the Sturm–Liouville operator on the half-line M. I. Belishev, S. A. Siminov Algebra i Analiz, 29:2 (2017), 3–33
|
|
10. |
T. A. Suslina, “Homogenization of higher-order parabolic systems in a bounded domain”, Appl. Anal., 98:1-2, SI (2019), 3–31  |
→ |
Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients T. A. Suslina Algebra i Analiz, 29:2 (2017), 139–192
|
11. |
W. Niu, Ya. Xu, “Uniform boundary estimates in homogenization of higher-order elliptic systems”, Ann. Mat. Pura Appl., 198:1 (2019), 97–128  |
→ |
Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients T. A. Suslina Algebra i Analiz, 29:2 (2017), 139–192
|
12. |
A. B. Antonevich, T. G. Shagova, “Umnozhenie raspredelenii i algebry mnemofunktsii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 65, № 3, Rossiiskii universitet druzhby narodov, M., 2019, 339–389  |
→ |
Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients T. A. Suslina Algebra i Analiz, 29:2 (2017), 139–192
|
13. |
W. Niu, Yu. Yuan, “Convergence rate in homogenization of elliptic systems with singular perturbations”, J. Math. Phys., 60:11 (2019), 111509  |
→ |
Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients T. A. Suslina Algebra i Analiz, 29:2 (2017), 139–192
|
14. |
Julia Orlik, Heiko Andrä, Sarah Staub, Integral Methods in Science and Engineering, 2019, 283  |
→ |
Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients T. A. Suslina Algebra i Analiz, 29:2 (2017), 139–192
|
|
15. |
S. I. Mitrokhin, “Asimptotika spektra periodicheskoi kraevoi zadachi dlya differentsialnogo operatora s summiruemym potentsialom”, Tr. IMM UrO RAN, 25, № 1, 2019, 136–149  |
→ |
Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial A. A. Fedotov, E. V. Shchetka Algebra i Analiz, 29:2 (2017), 193–219
|
16. |
A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414  |
→ |
Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial A. A. Fedotov, E. V. Shchetka Algebra i Analiz, 29:2 (2017), 193–219
|
17. |
A. Yu. Anikin, J. Bruening, S. Yu. Dobrokhotov, E. V. Vybornyi, “Averaging and spectral bands for the 2-D magnetic Schrodinger operator with growing and one-direction periodic potential”, Russ. J. Math. Phys., 26:3 (2019), 265–276  |
→ |
Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial A. A. Fedotov, E. V. Shchetka Algebra i Analiz, 29:2 (2017), 193–219
|
18. |
A. Fedotov, F. Klopp, “The complex wkb method for difference equations and airy functions”, SIAM J. Math. Anal., 51:6 (2019), 4413–4447  |
→ |
Complex WKB method for the difference Schrödinger equation with the potential being a trigonometric polynomial A. A. Fedotov, E. V. Shchetka Algebra i Analiz, 29:2 (2017), 193–219
|
|
19. |
R. Kramer, D. Lewanski, S. Shadrin, “Quasi-polynomiality of monotone orbifold Hurwitz numbers and Grothendieck's dessins d'enfants”, Doc. Math., 24 (2019), 857–898  |
→ |
Rationality in map and hypermap enumeration by genus P. Zograf, M. Kazarian Algebra i Analiz, 29:3 (2017), 23–33
|
|
20. |
M. Fuchs, J. Mueller, “A liouville theorem for stationary incompressible fluids of von mises type”, Acta Math. Sci., 39:1 (2019), 1–10  |
→ |
Signal recovery via TV-type energies M. Fuchs, J. Müller, C. Tietz Algebra i Analiz, 29:4 (2017), 159–195
|
|
|
Total publications: |
1949 |
Scientific articles: |
1846 |
Authors: |
1408 |
Citations: |
14230 |
Cited articles: |
1464 |
 |
Impact Factor Web of Science |
|
for 2023:
0.700 |
|
for 2022:
0.800 |
|
for 2021:
0.934 |
|
for 2020:
0.804 |
|
for 2019:
0.800 |
|
for 2018:
1.000 |
|
for 2017:
0.604 |
|
for 2016:
0.438 |
|
for 2015:
0.485 |
|
for 2014:
0.641 |
|
for 2013:
0.561 |
|
for 2012:
0.460 |
|
for 2011:
0.287 |
|
for 2010:
0.347 |
 |
Scopus Metrics |
|
2023 |
CiteScore |
1.000 |
|
2023 |
SNIP |
0.425 |
|
2023 |
SJR |
0.350 |
|
2022 |
SJR |
0.431 |
|
2021 |
SJR |
0.325 |
|
2020 |
SJR |
0.328 |
|
2019 |
SJR |
0.458 |
|
2018 |
CiteScore |
0.580 |
|
2018 |
SJR |
0.632 |
|
2017 |
CiteScore |
0.340 |
|
2017 |
SNIP |
0.519 |
|
2017 |
SJR |
0.335 |
|
2016 |
CiteScore |
0.230 |
|
2016 |
SNIP |
0.398 |
|
2016 |
SJR |
0.215 |
|
2015 |
CiteScore |
0.280 |
|
2015 |
SNIP |
0.722 |
|
2015 |
IPP |
0.245 |
|
2015 |
SJR |
0.366 |
|
2014 |
CiteScore |
0.330 |
|
2014 |
SNIP |
0.690 |
|
2014 |
IPP |
0.336 |
|
2014 |
SJR |
0.317 |
|
2013 |
SNIP |
0.591 |
|
2013 |
IPP |
0.306 |
|
2013 |
SJR |
0.277 |
|
2012 |
SNIP |
0.728 |
|
2012 |
IPP |
0.260 |
|
2012 |
SJR |
0.205 |
|