Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS
ENG
JOURNALS
PEOPLE
ORGANISATIONS
CONFERENCES
SEMINARS
VIDEO LIBRARY
PACKAGE AMSBIB
JavaScript is disabled in your browser. Please switch it on to enable full functionality of the website
General information
Latest issue
Archive
Search papers
Search references
RSS
Latest issue
Current issues
Archive issues
What is RSS
Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find
Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register
2021, Volume 201
|
General information
|
Contents
|
Differential equations, geometry, and topology
An inverse mixed problem for an integro-differential equation with a multidimensional Benney–Luke operator and nonlinear maximums
T. K. Yuldashev (Iuldashev)
3–15
Inverse boundary-value problem for a pseudoparabolic-pseudohyperbolic integro-differential equation
T. K. Yuldashev (Iuldashev), B. I. Islomov
16–32
Mixed problem for an integro-differential equation with a multidimensional pseudoparabolic operator and nonlinear deviation
T. K. Yuldashev (Iuldashev), F. D. Rakhmonov
33–43
On the inverse initial-value problem for a quasilinear differential equation with a high-degree multidimensional Whitham operator
G. A. Dyikanov, K. Kh. Shabadikov, T. K. Yuldashev (Iuldashev)
44–52
Nonlinear integro-differential equation with a high-degree hyperbolic operator
T. K. Yuldashev (Iuldashev), I. U. Nazarov
53–64
On a nonlocal boundary-value problem for a mixed-type equation of the second kind
B. I. Islomov, A. A. Abdullayev
65–79
Expansion formulas for hypergeometric functions of two variables
T. G. Ergashev
80–97
Asymptotic solution of the Neumann problem with an irregular singular point
D. A. Tursunov, K. G. Kozhobekov
98–102
Local
$\tau$
-density of the sum and the superextension of topological spaces
F. G. Mukhamadiev
103–106
Cardinal and topological properties of the space of symmetric degree
R. B. Beshimov, R. M. Juraev
107–122
The problem of recovering a surface by the given external curvature and solutions of the Monge–Ampère equation
A. Artikbaev, N. M. Ibodullaeva
123–131
Contact us:
email
Terms of Use
Registration to the website
Logotypes
©
Steklov Mathematical Institute RAS
, 2025