Trudy Matematicheskogo Instituta imeni V. A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


1954, Volume 42  

| General information | Contents | Forward links | Page by page |


The theory of algorithms



This book is cited in the following Math-Net.Ru publications:
  1. On unsolvable $Q$-theories of ring varieties
    A. I. Budkin
    Sib. J. Pure and Appl. Math., 2018, 18:3, 20–26
  2. Inhibitor Petri net that executes an arbitrary given Markov normal algorithm
    D. A. Zaitsev
    Model. Anal. Inform. Sist., 2011, 18:4, 80–93
  3. Algorithmic recognizability of finiteness property of finite-definite systems
    E. N. Pavlovsky
    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2006, 6:4, 83–92
  4. Markov Properties of Burnside Varieties of Semigroups
    V. Yu. Popov
    Algebra Logika, 2003, 42:1, 94–106
  5. Decision problems for groups and semigroups
    S. I. Adian, V. G. Durnev
    Uspekhi Mat. Nauk, 2000, 55:2(332), 3–94
  6. An elementary exposition of Gödel's incompleteness theorem
    V. A. Uspenskii
    Uspekhi Mat. Nauk, 1974, 29:1(175), 3–47
  7. Diophantine sets
    Yu. V. Matiyasevich
    Uspekhi Mat. Nauk, 1972, 27:5(167), 185–222
  8. Systems of equations in a free group. I
    Yu. I. Khmelevskii
    Izv. Akad. Nauk SSSR Ser. Mat., 1971, 35:6, 1237–1268
  9. Diophantine representation of enumerable predicates
    Yu. V. Matiyasevich
    Izv. Akad. Nauk SSSR Ser. Mat., 1971, 35:1, 3–30
  10. Invariant properties of systems of formulas of elementary axiomatic theories
    M. M. Kipnis
    Izv. Akad. Nauk SSSR Ser. Mat., 1970, 34:5, 963–976
  11. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
    A. K. Zvonkin, L. A. Levin
    Uspekhi Mat. Nauk, 1970, 25:6(156), 85–127
  12. Normal algorithms connected with the computation of boolean functions
    A. A. Markov
    Izv. Akad. Nauk SSSR Ser. Mat., 1967, 31:1, 161–208


  13. Andrei Andreevich Markov (on the centenary of his birth)
    Diskr. Mat., 2004, 16:1, 3–8
Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025