Trudy Matematicheskogo Instituta im. V. A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


1985, Volume 171  

| General information | Contents | Forward links |


Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators



This book is cited in the following Math-Net.Ru publications:
  1. Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
    A. A. Raev, V. A. Sloushch, T. A. Suslina
    Zap. Nauchn. Sem. POMI, 2023, 521, 212–239
  2. Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
    A. A. Mishulovich
    Zap. Nauchn. Sem. POMI, 2022, 516, 135–175
  3. On lacunas in the spectrum of the Laplacian with the Dirichlet boundary condition in a strip with oscillating boundary
    D. I. Borisov
    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019, 162, 3–14
  4. Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
    S. A. Nazarov
    Tr. Mosk. Mat. Obs., 2019, 80:1, 1–62
  5. Spectral estimates for Schrödinger operators on periodic discrete graphs
    E. Korotyaev, N. Saburova
    Algebra i Analiz, 2018, 30:4, 61–106
  6. Gaps in the spectrum of the Laplacian in a band with periodic delta interaction
    D. I. Borisov
    Trudy Inst. Mat. i Mekh. UrO RAN, 2018, 24:2, 46–53
  7. On spectral gaps of a Laplacian in a strip with a bounded periodic perturbation
    D. I. Borisov
    Ufimsk. Mat. Zh., 2018, 10:2, 13–29
  8. Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential
    M. S. Smetanina
    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018, 28:4, 462–473
  9. Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations
    S. A. Nazarov
    Zap. Nauchn. Sem. POMI, 2018, 471, 168–210
  10. On lacunas in the lower part of the spectrum of the periodic magnetic operator in a strip
    D. I. Borisov
    CMFD, 2017, 63:3, 373–391
  11. Open waveguides in a thin Dirichlet lattice: II. Localized waves and radiation conditions
    S. A. Nazarov
    Zh. Vychisl. Mat. Mat. Fiz., 2017, 57:2, 237–254
  12. Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum
    S. A. Nazarov
    Zh. Vychisl. Mat. Mat. Fiz., 2017, 57:1, 144–162
  13. Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative rapidly decaying potential
    V. A. Sloushch
    Algebra i Analiz, 2015, 27:2, 196–210
  14. Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions
    F. L. Bakharev, S. A. Nazarov
    Sibirsk. Mat. Zh., 2015, 56:4, 732–751
  15. Eigenmodes of a thin elastic layer between periodic rigid profiles
    S. A. Nazarov
    Zh. Vychisl. Mat. Mat. Fiz., 2015, 55:10, 1713–1726
  16. Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls
    S. A. Nazarov
    Zap. Nauchn. Sem. POMI, 2014, 422, 90–130
  17. Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
    S. A. Nazarov
    Mat. Zametki, 2010, 87:5, 764–786
  18. Opening a gap in the essential spectrum of the elasticity problem in a periodic semi-layer
    S. A. Nazarov
    Algebra i Analiz, 2009, 21:2, 166–204
  19. Gap detection in the spectrum of an elastic periodic waveguide with a free surface
    S. A. Nazarov
    Zh. Vychisl. Mat. Mat. Fiz., 2009, 49:2, 332–343
  20. On the structure of the lower spectral edge for a magnetic Schrödinger operator with small magnetic potential
    R. G. Shterenberg
    Algebra i Analiz, 2005, 17:5, 232–243
  21. On the spectrum of polyharmonic operators with limit-periodic potentials
    M. M. Skriganov, A. V. Sobolev
    Algebra i Analiz, 2005, 17:5, 164–189
  22. Asymptotic estimates for spectral, bands of periodic Schrödenger operators
    M. M. Skriganov, A. V. Sobolev
    Algebra i Analiz, 2005, 17:1, 276–288
  23. Spectral Properties of Schrodinger Operators on Decorated Graphs
    J. Brüning, V. A. Geiler, I. S. Lobanov
    Mat. Zametki, 2005, 77:6, 932–935
  24. An example of a periodic magnetic Schrödinger in operator with degenerate lower edge of the spectrum
    R. G. Shterenberg
    Algebra i Analiz, 2004, 16:2, 177–185
  25. The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field
    Yu. P. Chuburin
    TMF, 2003, 134:2, 243–253
  26. On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator
    Yu. P. Chuburin
    Mat. Zametki, 1997, 62:5, 773–781
  27. On small perturbations of the Schrödinger equation with periodic potential
    Yu. P. Chuburin
    TMF, 1997, 110:3, 443–453
  28. On lacunae in the spectrum of the three-dimensional periodic Schrödinger operator with a magnetic field
    V. A. Geiler, V. A. Margulis, I. I. Chuchaev
    Uspekhi Mat. Nauk, 1995, 50:1(301), 195–196
  29. Spectrum of three-dimensional landau operator perturbed by a periodic point potential
    V. A. Geiler, V. V. Demidov
    TMF, 1995, 103:2, 283–294
  30. Multidimensional discrete Schrödinger equation with limit periodic potential
    Yu. P. Chuburin
    TMF, 1995, 102:1, 74–82
  31. Unstable points of the spectrum of a periodic difference operator
    L. A. Malozemov
    Funktsional. Anal. i Prilozhen., 1989, 23:4, 87–88
  32. Analytic perturbation theory for a periodic potential
    Yu. E. Karpeshina
    Izv. Akad. Nauk SSSR Ser. Mat., 1989, 53:1, 45–65
  33. Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe–Sommerfeld conjecture
    O. A. Veliev
    Funktsional. Anal. i Prilozhen., 1987, 21:2, 1–15
Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025