|
1985, Volume 171
|
|
|
|
Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators
This book is cited in the following Math-Net.Ru publications:
- Homogenization of a one-dimensional fourth-order periodic operator with a singular potential
A. A. Raev, V. A. Sloushch, T. A. Suslina Zap. Nauchn. Sem. POMI, 2023, 521, 212–239 - Homogenization of the multidimensional parabolic equations with periodic coefficients at the edge of a spectral gap
A. A. Mishulovich Zap. Nauchn. Sem. POMI, 2022, 516, 135–175 - On lacunas in the spectrum of the Laplacian with the Dirichlet boundary condition in a strip with oscillating boundary
D. I. Borisov Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2019, 162, 3–14 - Finite-dimensional approximations to the Poincaré–Steklov operator for general elliptic boundary value problems in domains with cylindrical and periodic exits to infinity
S. A. Nazarov Tr. Mosk. Mat. Obs., 2019, 80:1, 1–62 - Spectral estimates for Schrödinger operators on periodic discrete graphs
E. Korotyaev, N. Saburova Algebra i Analiz, 2018, 30:4, 61–106 - Gaps in the spectrum of the Laplacian in a band with periodic delta interaction
D. I. Borisov Trudy Inst. Mat. i Mekh. UrO RAN, 2018, 24:2, 46–53 - On spectral gaps of a Laplacian in a strip with a bounded periodic perturbation
D. I. Borisov Ufimsk. Mat. Zh., 2018, 10:2, 13–29 - Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential
M. S. Smetanina Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018, 28:4, 462–473 - Asymptotics of eigenvalues in spectral gaps of periodic waveguides with small singular perturbations
S. A. Nazarov Zap. Nauchn. Sem. POMI, 2018, 471, 168–210 - On lacunas in the lower part of the spectrum of the periodic magnetic operator in a strip
D. I. Borisov CMFD, 2017, 63:3, 373–391 - Open waveguides in a thin Dirichlet lattice: II. Localized waves and radiation conditions
S. A. Nazarov Zh. Vychisl. Mat. Mat. Fiz., 2017, 57:2, 237–254 - Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum
S. A. Nazarov Zh. Vychisl. Mat. Mat. Fiz., 2017, 57:1, 144–162 - Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative rapidly decaying potential
V. A. Sloushch Algebra i Analiz, 2015, 27:2, 196–210 - Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions
F. L. Bakharev, S. A. Nazarov Sibirsk. Mat. Zh., 2015, 56:4, 732–751 - Eigenmodes of a thin elastic layer between periodic rigid profiles
S. A. Nazarov Zh. Vychisl. Mat. Mat. Fiz., 2015, 55:10, 1713–1726 - Gap opening around a given point of the spectrum of a cylindrical waveguide by means of gentle periodic perturbation of walls
S. A. Nazarov Zap. Nauchn. Sem. POMI, 2014, 422, 90–130 - Opening of a Gap in the Continuous Spectrum of a Periodically Perturbed Waveguide
S. A. Nazarov Mat. Zametki, 2010, 87:5, 764–786 - Opening a gap in the essential spectrum of the elasticity problem in a periodic semi-layer
S. A. Nazarov Algebra i Analiz, 2009, 21:2, 166–204 - Gap detection in the spectrum of an elastic periodic waveguide with a free surface
S. A. Nazarov Zh. Vychisl. Mat. Mat. Fiz., 2009, 49:2, 332–343 - On the structure of the lower spectral edge for a magnetic Schrödinger operator with small magnetic potential
R. G. Shterenberg Algebra i Analiz, 2005, 17:5, 232–243 - On the spectrum of polyharmonic operators with limit-periodic potentials
M. M. Skriganov, A. V. Sobolev Algebra i Analiz, 2005, 17:5, 164–189 - Asymptotic estimates for spectral, bands of periodic Schrödenger operators
M. M. Skriganov, A. V. Sobolev Algebra i Analiz, 2005, 17:1, 276–288 - Spectral Properties of Schrodinger Operators on Decorated Graphs
J. Brüning, V. A. Geiler, I. S. Lobanov Mat. Zametki, 2005, 77:6, 932–935 - An example of a periodic magnetic Schrödinger in operator with degenerate lower edge of the spectrum
R. G. Shterenberg Algebra i Analiz, 2004, 16:2, 177–185 - The Spectrum and Eigenfunctions of the Two-Dimensional Schrödinger Operator with a Magnetic Field
Yu. P. Chuburin TMF, 2003, 134:2, 243–253 - On approximation of the “Membrane” Schrödinger operator by the “Crystal” operator
Yu. P. Chuburin Mat. Zametki, 1997, 62:5, 773–781 - On small perturbations of the Schrödinger equation with periodic potential
Yu. P. Chuburin TMF, 1997, 110:3, 443–453 - On lacunae in the spectrum of the three-dimensional periodic Schrödinger operator with a magnetic field
V. A. Geiler, V. A. Margulis, I. I. Chuchaev Uspekhi Mat. Nauk, 1995, 50:1(301), 195–196 - Spectrum of three-dimensional landau operator perturbed by a periodic point potential
V. A. Geiler, V. V. Demidov TMF, 1995, 103:2, 283–294 - Multidimensional discrete Schrödinger equation with limit periodic potential
Yu. P. Chuburin TMF, 1995, 102:1, 74–82 - Unstable points of the spectrum of a periodic difference operator
L. A. Malozemov Funktsional. Anal. i Prilozhen., 1989, 23:4, 87–88 - Analytic perturbation theory for a periodic potential
Yu. E. Karpeshina Izv. Akad. Nauk SSSR Ser. Mat., 1989, 53:1, 45–65 - Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe–Sommerfeld conjecture
O. A. Veliev Funktsional. Anal. i Prilozhen., 1987, 21:2, 1–15
|
|