Trudy Matematicheskogo Instituta im. V. A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


1986, Volume 174  

| General information | Contents | Forward links |


Uniform limit theorems for sums of independent random variables



This book is cited in the following Math-Net.Ru publications:
  1. Götze F., Zaitsev A. Yu. Improved applications of Arak's inequalities to the Littlewood–Offord problem
    F. Götze, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2024, 535, 70–91
  2. Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors
    A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2023, 525, 86–95
  3. On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
    Ya. S. Golikova, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2022, 515, 83–90
  4. Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions
    Ya. S. Golikova
    Zap. Nauchn. Sem. POMI, 2021, 505, 87–93
  5. Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra
    F. Götze, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2021, 501, 118–125
  6. Calculation of constant values in lemma about functions $w(x)$ and $g(t)$ at method of smooth triangular functions
    Ya. S. Golikova
    Zap. Nauchn. Sem. POMI, 2020, 495, 135–146
  7. On the calculation of constants in the Arak inequality for the concentration functions of convolution of probability distributions
    Ya. S. Golikova
    Zap. Nauchn. Sem. POMI, 2019, 486, 86–97
  8. Improved multivariate version of the second Kolmogorov's uniform limit theorem
    F. Götze, A. Yu. Zaitsev, D. Zaporozhets
    Zap. Nauchn. Sem. POMI, 2019, 486, 71–85
  9. On improvement of the estimate of the distance between sequential sums of independent random variables
    Ya. S. Golikova
    Zap. Nauchn. Sem. POMI, 2018, 474, 118–123
  10. Estimates for the closeness of convolutions of probability distributions on convex polyhedra
    F. Götze, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2018, 474, 108–117
  11. Rare events and Poisson point processes
    F. Götze, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2017, 466, 109–119
  12. Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables
    E. L. Maistrenko
    Zap. Nauchn. Sem. POMI, 2016, 454, 216–219
  13. Arak's inequalities for the generalized arithmetic progressions
    A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2016, 454, 151–157
  14. Bound for the maximal probability in the Littlewood–Offord problem
    A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2015, 441, 204–209
  15. On the Littlewood–Offord problem
    Yu. S. Eliseeva, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2014, 431, 72–81
  16. Estimates for the concentration functions in the Littlewood–Offord problem
    Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2013, 420, 50–69
  17. Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables
    Yu. S. Eliseeva
    Zap. Nauchn. Sem. POMI, 2013, 412, 121–137
  18. Estimates of the concentration functions of weighted sums of independent random variables
    Yu. S. Eliseeva, A. Yu. Zaitsev
    Teor. Veroyatnost. i Primenen., 2012, 57:4, 768–777
  19. On the approximation of convolutions by accompanying laws in the scheme of series
    A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2012, 408, 175–186
  20. Estimate of the Concentration Function for a Class of Additive Functions
    M. B. Khripunova, A. A. Yudin
    Mat. Zametki, 2007, 82:4, 598–605
  21. Estimates for moduli of smoothness of distribution functions
    J. A. Adell, A. Lekuona
    Teor. Veroyatnost. i Primenen., 2007, 52:1, 186–190
  22. Approximation of convolutions by accompanying laws without centering
    F. Götze, A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2004, 320, 44–53
  23. On approximation of the sample by a Poisson point process
    A. Yu. Zaitsev
    Zap. Nauchn. Sem. POMI, 2003, 298, 111–125
  24. On normal approximation of a process with independent increments
    E. Valkeila
    Uspekhi Mat. Nauk, 1995, 50:5(305), 103–120
Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025