|
|
1986, Volume 174
|
|
|
|
Uniform limit theorems for sums of independent random variables
This book is cited in the following Math-Net.Ru publications:
- Götze F., Zaitsev A. Yu. Improved applications of Arak's inequalities to the Littlewood–Offord problem
F. Götze, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2024, 535, 70–91 - Estimates of stability with respect to the number of summands for distributions of successive sums of i.i.d. vectors
A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2023, 525, 86–95 - On the accuracy of infinitely divisible approximation of $n$-fold convolutions of probability distributions
Ya. S. Golikova, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2022, 515, 83–90 - Calculation of constant values in pseudometric lemma at one-dimension method of smooth triangular functions
Ya. S. Golikova Zap. Nauchn. Sem. POMI, 2021, 505, 87–93 - Convergence to infinite-dimensional compound Poisson distributions on convex polyhedra
F. Götze, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2021, 501, 118–125 - Calculation of constant values in lemma about functions $w(x)$ and $g(t)$ at method of smooth triangular functions
Ya. S. Golikova Zap. Nauchn. Sem. POMI, 2020, 495, 135–146 - On the calculation of constants in the Arak inequality for the concentration functions of convolution of probability distributions
Ya. S. Golikova Zap. Nauchn. Sem. POMI, 2019, 486, 86–97 - Improved multivariate version of the second Kolmogorov's uniform limit theorem
F. Götze, A. Yu. Zaitsev, D. Zaporozhets Zap. Nauchn. Sem. POMI, 2019, 486, 71–85 - On improvement of the estimate of the distance between sequential sums of independent random variables
Ya. S. Golikova Zap. Nauchn. Sem. POMI, 2018, 474, 118–123 - Estimates for the closeness of convolutions of probability distributions on convex polyhedra
F. Götze, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2018, 474, 108–117 - Rare events and Poisson point processes
F. Götze, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2017, 466, 109–119 - Estimation of the constant in the inequality for the uniform distance between distributions of sequential sums of i.i.d. random variables
E. L. Maistrenko Zap. Nauchn. Sem. POMI, 2016, 454, 216–219 - Arak's inequalities for the generalized arithmetic progressions
A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2016, 454, 151–157 - Bound for the maximal probability in the Littlewood–Offord problem
A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2015, 441, 204–209 - On the Littlewood–Offord problem
Yu. S. Eliseeva, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2014, 431, 72–81 - Estimates for the concentration functions in the Littlewood–Offord problem
Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2013, 420, 50–69 - Multivariate estimates for the concentration functions of weighted sums of independent identically distributed random variables
Yu. S. Eliseeva Zap. Nauchn. Sem. POMI, 2013, 412, 121–137 - Estimates of the concentration functions of weighted sums of independent random variables
Yu. S. Eliseeva, A. Yu. Zaitsev Teor. Veroyatnost. i Primenen., 2012, 57:4, 768–777 - On the approximation of convolutions by accompanying laws in the scheme of series
A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2012, 408, 175–186 - Estimate of the Concentration Function for a Class of Additive Functions
M. B. Khripunova, A. A. Yudin Mat. Zametki, 2007, 82:4, 598–605 - Estimates for moduli of smoothness of distribution functions
J. A. Adell, A. Lekuona Teor. Veroyatnost. i Primenen., 2007, 52:1, 186–190 - Approximation of convolutions by accompanying laws without centering
F. Götze, A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2004, 320, 44–53 - On approximation of the sample by a Poisson point process
A. Yu. Zaitsev Zap. Nauchn. Sem. POMI, 2003, 298, 111–125 - On normal approximation of a process with independent increments
E. Valkeila Uspekhi Mat. Nauk, 1995, 50:5(305), 103–120
|
|