|
Most published authors (scientific articles only) of the journal
scientific articles published in peer review journal, serial, conference publications, indexed in international bibliographical databases and/or having DOI index
|
1. |
V. P. Radchenko |
54 |
2. |
V. E. Zoteev |
32 |
3. |
A. F. Zausaev |
25 |
4. |
V. V. Struzhanov |
25 |
5. |
M. N. Saushkin |
23 |
6. |
Yu. N. Radayev |
22 |
7. |
E. Yu. Prosviryakov |
21 |
8. |
O. A. Repin |
20 |
9. |
A. P. Yankovskii |
20 |
10. |
L. A. Mitlina |
19 |
11. |
N. N. Popov |
19 |
12. |
A. A. Andreev |
16 |
13. |
E. N. Ogorodnikov |
16 |
14. |
D. M. Gureev |
15 |
15. |
A. I. Nikonov |
15 |
16. |
O. S. Afanas'eva |
14 |
17. |
A. M. Shterenberg |
14 |
18. |
A. Yu. Samarin |
13 |
19. |
Yu. I. Kadashevich |
12 |
20. |
S. P. Pomytkin |
12 |
21. |
T. K. Yuldashev |
12 |
|
40 most published authors of the journal |
|
Most cited authors of the journal |
1. |
V. P. Radchenko |
284 |
2. |
E. N. Ogorodnikov |
148 |
3. |
E. Yu. Prosviryakov |
144 |
4. |
Yu. N. Radayev |
139 |
5. |
A. A. Andreev |
93 |
6. |
E. V. Murashkin |
90 |
7. |
A. V. Khokhlov |
84 |
8. |
O. A. Repin |
81 |
9. |
L. A. Mitlina |
80 |
10. |
T. K. Yuldashev |
79 |
11. |
V. V. Struzhanov |
78 |
12. |
V. E. Zoteev |
75 |
13. |
N. V. Burmasheva |
70 |
14. |
M. N. Saushkin |
68 |
15. |
O. S. Afanas'eva |
58 |
16. |
N. S. Yashagin |
58 |
17. |
K. B. Sabitov |
57 |
18. |
S. K. Kumykova |
50 |
19. |
V. N. Anisimov |
47 |
20. |
N. N. Popov |
46 |
|
40 most cited authors of the journal |
|
Most cited articles of the journal |
1. |
Refinements of integral Cauchy–Bunyakovskii inequality S. M. Sitnik Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2000, 9, 37–45 |
37 |
2. |
The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories Yu. N. Radayev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, 22:3, 504–517 |
30 |
3. |
Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation T. K. Yuldashev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, 1(34), 56–65 |
29 |
4. |
A large-scale layered stationary convection of a incompressible viscous fluid under the action
of shear stresses at the upper boundary. Velocity field investigation N. V. Burmasheva, E. Yu. Prosviryakov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, 21:1, 180–196 |
28 |
5. |
Fluctuations of a beam with clamped ends K. B. Sabitov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, 19:2, 311–324 |
28 |
6. |
On a micropolar theory of growing solids E. V. Murashkin, Yu. N. Radayev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:3, 424–444 |
26 |
7. |
On the solvability of a boundary-value problem with a non-local boundary condition for linear parabolic equations A. I. Kozhanov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2004, 30, 63–69 |
24 |
8. |
Calculation procedure of a fatique point for strengthened cylindrical specimen with pressure concentrators at temperature endurances in the creep conditions V. P. Radchenko, O. S. Afanas'eva Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, 2(19), 264–268 |
23 |
9. |
On self-similar solution of an equation of the third order with multiple characteristics T. D. Dzhuraev, Yu. P. Apakov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, 2(15), 18–26 |
23 |
10. |
On the Neuber theory of micropolar elasticity. A pseudotensor formulation V. A. Kovalev, E. V. Murashkin, Yu. N. Radayev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, 24:4, 752–761 |
22 |
11. |
The nonlinear Maxwell-type model for viscoelastoplastic materials:
simulation of temperature influence on creep, relaxation and strain-stress curves A. V. Khokhlov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, 21:1, 160–179 |
22 |
12. |
Long-term strength curves generated by the nonlinear Maxwell-type model
for viscoelastoplastic materials and the linear damage rule under step loading A. V. Khokhlov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2016, 20:3, 524–543 |
22 |
13. |
Rheological model of viscoelastic body with memory and differential equations of fractional oscillator E. N. Ogorodnikov, V. P. Radchenko, N. S. Yashagin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, 1(22), 255–268 |
21 |
14. |
Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation E. N. Ogorodnikov, N. S. Yashagin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, 1(18), 276–279 |
21 |
15. |
Problem with shift for the third-order equation with discontinuous coefficients O. A. Repin, S. K. Kumykova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, 4(29), 17–25 |
20 |
16. |
Investigation of Resonance Characteristics of Mechanical Objects with Moving Borders by Application of the Kantorovich-Galyorkin Method V. N. Anisimov, V. L. Litvinov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, 1(18), 149–158 |
19 |
17. |
Development of physical principles and algorithms of computer modelling of basic processes of the microstructure formation by the methods of probabilistic cellular automaton A. N. Agaphonov, A. V. Volkov, S. B. Konygin, A. G. Sanoyan Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, 1(14), 99–107 |
19 |
18. |
The mathematical model of inelastic deformation and failure of the metals by energy-type creep V. P. Radchenko Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1996, 4, 43–63 |
19 |
19. |
A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation N. V. Burmasheva, E. Yu. Prosviryakov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2017, 21:4, 736–751 |
18 |
20. |
Experimental study and analysis of the inelastic micro- and macro-inhomogeneity fields of AD-1 alloy V. P. Radchenko, S. A. Dudkin, M. I. Timofeev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, 16, 111–117 |
18 |
21. |
Development and research in digital linear models of dissipative systems wavering V. E. Zoteev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1999, 7, 170–177 |
18 |
|
40 most cited articles of the journal |
|
Most requested articles of the journal |
|
|
1. |
Fluctuations of a beam with clamped ends K. B. Sabitov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, 19:2, 311–324 | 27 |
2. |
Identification of the parameters of a rod with a longitudinal
rectangular groove using two spectra of natural frequencies
of bending vibrations I. М. Utyashev, A. F. Fatkhelislamov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, 28:2, 378–389 | 24 |
3. |
Khalouta transform via different fractional derivative operators A. Khalouta Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, 28:3, – | 24 |
4. |
A numerical method for calculating the fields of residual stresses in a surface-hardened prismatic sample with a non-through transversal crack of V-shaped profile in an elastic-plastic formulation V. P. Radchenko, M. N. Saushkin, D. M. Shishkin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, 28:2, 267–285 | 23 |
5. |
Identification of parameters of convection–diffusion–reaction model and unknown boundary conditions in the presence of random noise in measurements Yu. V. Tsyganova, A. V. Tsyganov, A. N. Kuvshinova, D. V. Galushkina Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, 28:2, 345–366 | 22 |
6. |
Residual stress analysis in surface-hardened rotating prismatic elements with semicircular notches
under high-temperature creep V. P. Radchenko, M. N. Saushkin, D. M. Shishkin Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, 28:3, – | 22 |
7. |
Photonic communications in biological systems S. N. Mayburov Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, 2(23), 260–265 | 21 |
8. |
Ultrametric diffusion in a strong centrally symmetric
field O. M. Sizova Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, 19:1, 87–104 | 21 |
9. |
A new application of Khalouta differential transform method and
convergence analysis to solve nonlinear fractional Liénard equation L. Chetioui, A. Khalouta Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2024, 28:2, 207–222 | 21 |
10. |
Asymptotic Analysis of Hydraulic Fracture Crack Process Growth V. I. Astaf'ev Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, 5(21), 105–116 | 20 |
|
Total publications: |
1629 |
Scientific articles: |
1592 |
Authors: |
1446 |
Citations: |
3671 |
Cited articles: |
969 |
|
Impact Factor Web of Science |
|
for 2023:
0.700 |
|
Scopus Metrics |
|
2023 |
CiteScore |
1.500 |
|
2023 |
SNIP |
0.823 |
|
2023 |
SJR |
0.370 |
|
2022 |
CiteScore |
1.146 |
|
2022 |
SNIP |
0.671 |
|
2022 |
SJR |
0.298 |
|
2021 |
CiteScore |
0.731 |
|
2021 |
SNIP |
0.616 |
|
2021 |
SJR |
0.323 |
|
2020 |
CiteScore |
0.381 |
|
2020 |
SNIP |
0.425 |
|
2020 |
SJR |
0.302 |
|