|
Prefase N. K. Nikol'skii, V. P. Khavin, S. V. Khrushchev
|
7–9 |
|
Chapter I. Spaces of analytic functions
|
10–11 |
|
|
1.1. Absolutely summing operators prom the disc algebra A. Pełczyński
|
12–14 |
|
|
2.1. When is $\Pi_2(x,l^2)=L(x,l^2)$? I. A. Komarchev, B. M. Makarov
|
15–17 |
|
|
3.1. Finite dimensional operators on spaces of analytic functions P. Wîjtaszñzók
|
18–19 |
|
|
4.1. Complemented subspaces of $A$, $H^1$ and $H^\infty$ P. G. Casazza
|
20–22 |
|
|
5.1. Spaces of Hardy type E. M. Semenov
|
23–24 |
|
|
6.1. Spaces of analytic functions (isomorphisms, bases) V. P. Zakharyuta, O. S. Semiguk, N. I. Skiba
|
25–28 |
|
|
7.1. Linear functionals on spaces of analytic functions and linear convexity in $\mathbb C^n$ L. A. Aizenberg
|
29–32 |
|
|
8.1. Golubev series and analyticity in a neighborhood of a continuum V. P. Khavin
|
33–35 |
|
|
9.1. On uniqueness of the carrier of an analytic functional V. M. Trutnev
|
36–37 |
|
Chapter 2. Banach algebras
|
38 |
|
|
1.2. The vanishing interior of the spectrum G. J. Murphy, T. T. West
|
39–40 |
|
|
2.2. The spectral radius formula in quotient algebras G. J. Murphy, M. R. Smyth, T. T. West
|
41 |
|
|
3.2. Analyticity in the Gelfand space of the algebra of $L^1(\mathbb R)$ multipliers G. Brown, W. Moran
|
42–45 |
|
|
4.2. On the Cohen–Rudin characterisation of homomorphisms of measure algebras S. Igari
|
46–47 |
|
|
5.2. Polynomial approximation L. de Branges
|
48–49 |
|
|
6.2. Problems pertaining to the algebra of bounded analytic functions T. W. Gamelin
|
50–52 |
|
|
7.2. Subalgebras of the disk algebra J. Wermer
|
53–54 |
|
|
8.2. Sets of antisymmetry and support sets for $H^\infty+C$ D. Sarason
|
55–57 |
|
|
9.2. Algebraic equations in commutative Banach algebras E. A. Gorin
|
58–61 |
|
|
10.2. Holomorphic maps of certain spaces connected with algebraic functions V. Ya. Lin
|
62–65 |
|
Chapter 3. Problems from probability theory
|
66–67 |
|
|
1.3. Some questions about Hardy functions H. P. McKean
|
68–69 |
|
|
2.3. Analytic problems of the theory of stochastic processes I. A. Ibragimov, V. N. Solev
|
70–72 |
|
|
3.3. The problem of N. A. Sapogov N. A. Sapogov
|
73 |
|
|
4.3. On the existence of measures with prescribed projections V. N. Sudakov
|
74 |
|
Chapter 4. Linear operators
|
75–76 |
|
|
1.4. Is a uniform algebraic approximation of the multiplication and shift operators possible? A. M. Vershik
|
77–81 |
|
|
2.4. Operators, analytic begligibility, and capacities C. R. Putnam
|
82–84 |
|
|
3.4. Null sets of operator functions with positive imaginary part B. S. Pavlov, L. D. Faddeev
|
85–88 |
|
|
4.4. A question of polynomial approximation arising in connection with the lacunae of the spectrum of Hill's equation H. P. McKean
|
89–91 |
|
|
5.4. Titchmarsh's theorem for vector functions H. Helson
|
92–93 |
|
|
6.4. Operators and approximation N. K. Nikol'skii
|
94–95 |
|
|
7.4. Spectral decomposition and the Carleson condition V. I. Vasyunin, N. K. Nikol'skii, B. S. Pavlov
|
96–98 |
|
|
8.4. A problem on operator valued bounded analytic functions B. Szőkefalvi-Nagy
|
99 |
|
|
9.4. The similarity problem and the structure of the singular spectrum of a nondissipative operator S. N. Naboko
|
100–102 |
|
|
10.4. Factorization of operators in $L^2(a,b)$ L. A. Sakhnovich
|
103–106 |
|
|
11.4. A similarity problem for Toeplitz operators D. N. Clark
|
107–108 |
|
|
12.4. Localization of Toeplitz operators R. G. Douglas
|
109–111 |
|
|
13.4. Factorization of operator functions (classification of holomorphic Hilbert space bundles over the Riemannian sphere) J. Leiterer
|
112–114 |
|
|
14.4. Estimation of operator polynomials in Schatten–von Neumann classes V. V. Peller
|
115–117 |
|
|
15.4. The decomposition of Riesz operators M. R. Smyth, T. T. West
|
118 |
|
Chapter 5. Spectral analysis and synthesis
|
119–121 |
|
|
1.5. About holomorphic functions with limited growth L. Waelbroeck
|
122–124 |
|
|
2.5. Localization of polynomial submodules in some spaces of analytic functions and solvability of the $\overline\partial$-equation V. P. Palamodov
|
125–127 |
|
|
3.5. Invariant subspaces and surjective differential operators V. M. Trutnev
|
128–129 |
|
|
4.5. Hardy classes and Riemann surfaces of Parreau–Widom òóðå M. Hasumi
|
130–132 |
|
|
5.5. Local description of closed submodules and the problem of supersaturation I. F. Krasichkov-Ternovskii
|
133–136 |
|
|
6.5. A problem of spectral theory of an ordinary differential operator in a coplex domain V. A. Tkachenko
|
137–138 |
|
|
7.5. Two problems of spectral synthesis N. K. Nikol'skii
|
139–141 |
|
|
8.5. Cyclic vectors in spaces of analytic functions A. L. Shields
|
142–144 |
|
|
9.5. Weak invertibility and factorization in certain spaces of analytic functions R. Frankfurt
|
145–148 |
|
|
10.5. Weakly invertible elements in Bergman spaces B. I. Korenblum
|
149–150 |
|
|
11.5. Invariant subspaces of the shift operator in some spaces of analytic functions F. A. Shamoyan
|
151–152 |
|
|
12.5. Blaschke products and ideals in $C_A^\infty$ D. L. Williams
|
153–155 |
|
|
13.5. Completeness of the system of shift functions in weight spaces V. P. Gurarii
|
156–159 |
|
|
14.5. A closure problem for functions on $\mathbb R_+$ Y. Domar
|
160–162 |
|
|
15.5. Shifts of functions of two variables B. Ya. Levin
|
162 |
|
|
16.5. Deux problèmes concernant les séries trígonométriques J.-P. Kahane
|
163 |
|
|
17.5. Harmonic synthesis and superposition E. M. Dyn'kin
|
164–165 |
|
|
18.5. On uniqueness theorem for the mean periodic functions Yu. I. Lyubich
|
166 |
|
|
19.5. The exact majorant problem S. Ya. Khavinson
|
167–168 |
|
Chapter 6. Approximation
|
169–170 |
|
|
1.6. Spectral synthesis in Sobolev spaces L. I. Hedberg
|
171–172 |
|
|
2.6. On the integrability of the derivative of conformal mapping J. Brennan
|
173–176 |
|
|
3.6. Splitting and boundary behavior in certain $H^2$ spaces T. Kriete
|
177–179 |
|
|
4.6. On the span of trigonometric sums in weighted $L^2$ spaces H. Dym
|
180–181 |
|
|
5.6. Rational approximation of analytic functions A. A. Gonchar
|
182–185 |
|
|
6.6. A convergence problem on rational approximation in several variables H. Wallin
|
186–189 |
|
|
7.6. The approximation by functions in $H^\infty+C$ V. M. Adamyan, D. Z. Arov, M. G. Krein
|
190–192 |
|
|
8.6. Badly-approximable functions on curves and regions L. A. Rubel
|
193–194 |
|
|
9.6. Exotic Jordan arcs in $\mathbb R^n$ G. M. Henkin
|
195–196 |
|
|
10.6. Regularity of boundary points for elliptic equations V. G. Maz'ya
|
197–199 |
|
Chapter 7. Analytic capacity
|
200–201 |
|
|
1.7. Removable sets for bounded analytic functions D. E. Marshall
|
202–205 |
|
|
2.7. On Painlevé null sets W. K. Hayman
|
205–207 |
|
|
3.7. Analytic capacity and rational approximation A. G. Vitushkin, M. S. Mel'nikov
|
207–209 |
|
|
4.7. About a null analytic capacity set L. D. Ivanov
|
209–211 |
|
|
5.7. Estimates of analytic capacity J. Kral
|
212–217 |
|
Chapter 8. The Cauchy type integral
|
218 |
|
|
1.8. $L^2$-boundedness of the Cauchy integral on Llipschitz graphs A. P. Calderón
|
219 |
|
|
2.8. On the Cauchy integral and related integral operators R. R. Coifman, Y. Meyer
|
220–221 |
|
|
3.8. On some questions concerning the classes of regions defining by properties of Cauchy type integrals G. Ts. Tumarkin
|
222–225 |
|
Chapter 9. BMO
|
226 |
|
|
1.9. Sets of uniqueness for QC D. Sarason
|
227–228 |
|
|
2.9. Some open problems concerning $H^\infty$ and BMO J. Garnett
|
228–229 |
|
|
3.9. Two conjectures by Albert Baernstein II A. Baernstein II
|
230–232 |
|
|
4.9. Blaschke products in $\mathscr B_0$ D. Sarason
|
233–234 |
|
|
5.9. Algebras coutained within $H^\infty$ J. M. Anderson
|
235–236 |
|
Chapter 10. Uniqueness theorems
|
237 |
|
|
1.10. Some open problems of the theory of analytic functions representations M. M. Dzhrbashyan
|
238–241 |
|
|
2.10. The uniquness sets for analytic function with finite Dirichlet integral V. P. Havin, S. V. Khrushchev
|
242–245 |
|
|
3.10. Quasianalytic properties of functions on respect to deferentiation operator V. I. Matsaev
|
246–247 |
|
|
4.10. Problems by R. Kaufman R. M. Kaufman
|
247 |
|
|
5.10. Local operators on Fourier transforms L. de Branges
|
248 |
|
|
6.10. The pick set for Lipschitz classes E. M. Dyn'kin
|
249–251 |
|
|
7.10. On a uniqueness theorem V. V. Napalkov
|
252 |
|
Chapter 11. Interpolation and bases
|
253–254 |
|
|
1.11. On the representation of functions by exponential series A. F. Leont'ev
|
255–257 |
|
|
2.11. Necessary conditions for interpolation by entire functions B. A. Taylor
|
258–259 |
|
|
3.11. On the multiplication and division of power series with the coefficient sequence from $l^p$ space S. A. Vinogradov
|
260–262 |
|
|
4.11. Rational functions with prescribed branching A. A. Gol'dberg
|
263 |
|
|
5.11. On the traces of $H^\infty(\mathbb B^N)$ functions on the hyperplanes N. A. Shirokov
|
264–265 |
|
Chapter 12. Entire functions
|
266 |
|
|
1.12. An inverse problem of the best approximation of uniformly continuous functions with the help of entire functions of exponential type and related questions M. I. Kadets
|
266–267 |
|
|
2.12. The zeros of sine type functions B. Ya. Levin, I. V. Ostrovskii
|
268–270 |
|
|
3.12. Operators conserving the completely regular growth I. V. Ostrovskii
|
271–273 |
|
|
4.12. Entire functions of the Laguerre–Pólya class B. Ya. Levin
|
274–275 |
|
5.12. Two problems about limit properties of entire functions V. S. Azarin
|
276 |
|
Chapter 13. Inner functions in the ball
|
277 |
|
|
1.13. The inner function problem in balls W. Rudin
|
278–280 |
|
|
2.13. The extreme rays of the positive pluriharmonic functions F. Forelli
|
281–282 |
|
Alphabetical index
|
283–289 |
|
Subject index
|
290–294 |
|
Notations
|
295 |