Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


1978, Volume 81  

| General information | Contents |


Investigations on linear operators and function theory


99 unsolved problems in linear and complex analysis

Prefase
N. K. Nikol'skii, V. P. Khavin, S. V. Khrushchev
7–9
Chapter I. Spaces of analytic functions
10–11
   1.1. Absolutely summing operators prom the disc algebra
A. Pełczyński
12–14
   2.1. When is $\Pi_2(x,l^2)=L(x,l^2)$?
I. A. Komarchev, B. M. Makarov
15–17
   3.1. Finite dimensional operators on spaces of analytic functions
P. Wîjtaszñzók
18–19
   4.1. Complemented subspaces of $A$, $H^1$ and $H^\infty$
P. G. Casazza
20–22
   5.1. Spaces of Hardy type
E. M. Semenov
23–24
   6.1. Spaces of analytic functions (isomorphisms, bases)
V. P. Zakharyuta, O. S. Semiguk, N. I. Skiba
25–28
   7.1. Linear functionals on spaces of analytic functions and linear convexity in $\mathbb C^n$
L. A. Aizenberg
29–32
   8.1. Golubev series and analyticity in a neighborhood of a continuum
V. P. Khavin
33–35
   9.1. On uniqueness of the carrier of an analytic functional
V. M. Trutnev
36–37
Chapter 2. Banach algebras
38
   1.2. The vanishing interior of the spectrum
G. J. Murphy, T. T. West
39–40
   2.2. The spectral radius formula in quotient algebras
G. J. Murphy, M. R. Smyth, T. T. West
41
   3.2. Analyticity in the Gelfand space of the algebra of $L^1(\mathbb R)$ multipliers
G. Brown, W. Moran
42–45
   4.2. On the Cohen–Rudin characterisation of homomorphisms of measure algebras
S. Igari
46–47
   5.2. Polynomial approximation
L. de Branges
48–49
   6.2. Problems pertaining to the algebra of bounded analytic functions
T. W. Gamelin
50–52
   7.2. Subalgebras of the disk algebra
J. Wermer
53–54
   8.2. Sets of antisymmetry and support sets for $H^\infty+C$
D. Sarason
55–57
   9.2. Algebraic equations in commutative Banach algebras
E. A. Gorin
58–61
   10.2. Holomorphic maps of certain spaces connected with algebraic functions
V. Ya. Lin
62–65
Chapter 3. Problems from probability theory
66–67
   1.3. Some questions about Hardy functions
H. P. McKean
68–69
   2.3. Analytic problems of the theory of stochastic processes
I. A. Ibragimov, V. N. Solev
70–72
   3.3. The problem of N. A. Sapogov
N. A. Sapogov
73
   4.3. On the existence of measures with prescribed projections
V. N. Sudakov
74
Chapter 4. Linear operators
75–76
   1.4. Is a uniform algebraic approximation of the multiplication and shift operators possible?
A. M. Vershik
77–81
   2.4. Operators, analytic begligibility, and capacities
C. R. Putnam
82–84
   3.4. Null sets of operator functions with positive imaginary part
B. S. Pavlov, L. D. Faddeev
85–88
   4.4. A question of polynomial approximation arising in connection with the lacunae of the spectrum of Hill's equation
H. P. McKean
89–91
   5.4. Titchmarsh's theorem for vector functions
H. Helson
92–93
   6.4. Operators and approximation
N. K. Nikol'skii
94–95
   7.4. Spectral decomposition and the Carleson condition
V. I. Vasyunin, N. K. Nikol'skii, B. S. Pavlov
96–98
   8.4. A problem on operator valued bounded analytic functions
B. Szőkefalvi-Nagy
99
   9.4. The similarity problem and the structure of the singular spectrum of a nondissipative operator
S. N. Naboko
100–102
   10.4. Factorization of operators in $L^2(a,b)$
L. A. Sakhnovich
103–106
   11.4. A similarity problem for Toeplitz operators
D. N. Clark
107–108
   12.4. Localization of Toeplitz operators
R. G. Douglas
109–111
   13.4. Factorization of operator functions (classification of holomorphic Hilbert space bundles over the Riemannian sphere)
J. Leiterer
112–114
   14.4. Estimation of operator polynomials in Schatten–von Neumann classes
V. V. Peller
115–117
   15.4. The decomposition of Riesz operators
M. R. Smyth, T. T. West
118
Chapter 5. Spectral analysis and synthesis
119–121
   1.5. About holomorphic functions with limited growth
L. Waelbroeck
122–124
   2.5. Localization of polynomial submodules in some spaces of analytic functions and solvability of the $\overline\partial$-equation
V. P. Palamodov
125–127
   3.5. Invariant subspaces and surjective differential operators
V. M. Trutnev
128–129
   4.5. Hardy classes and Riemann surfaces of Parreau–Widom òóðå
M. Hasumi
130–132
   5.5. Local description of closed submodules and the problem of supersaturation
I. F. Krasichkov-Ternovskii
133–136
   6.5. A problem of spectral theory of an ordinary differential operator in a coplex domain
V. A. Tkachenko
137–138
   7.5. Two problems of spectral synthesis
N. K. Nikol'skii
139–141
   8.5. Cyclic vectors in spaces of analytic functions
A. L. Shields
142–144
   9.5. Weak invertibility and factorization in certain spaces of analytic functions
R. Frankfurt
145–148
   10.5. Weakly invertible elements in Bergman spaces
B. I. Korenblum
149–150
   11.5. Invariant subspaces of the shift operator in some spaces of analytic functions
F. A. Shamoyan
151–152
   12.5. Blaschke products and ideals in $C_A^\infty$
D. L. Williams
153–155
   13.5. Completeness of the system of shift functions in weight spaces
V. P. Gurarii
156–159
   14.5. A closure problem for functions on $\mathbb R_+$
Y. Domar
160–162
   15.5. Shifts of functions of two variables
B. Ya. Levin
162
   16.5. Deux problèmes concernant les séries trígonométriques
J.-P. Kahane
163
   17.5. Harmonic synthesis and superposition
E. M. Dyn'kin
164–165
   18.5. On uniqueness theorem for the mean periodic functions
Yu. I. Lyubich
166
   19.5. The exact majorant problem
S. Ya. Khavinson
167–168
Chapter 6. Approximation
169–170
   1.6. Spectral synthesis in Sobolev spaces
L. I. Hedberg
171–172
   2.6. On the integrability of the derivative of conformal mapping
J. Brennan
173–176
   3.6. Splitting and boundary behavior in certain $H^2$ spaces
T. Kriete
177–179
   4.6. On the span of trigonometric sums in weighted $L^2$ spaces
H. Dym
180–181
   5.6. Rational approximation of analytic functions
A. A. Gonchar
182–185
   6.6. A convergence problem on rational approximation in several variables
H. Wallin
186–189
   7.6. The approximation by functions in $H^\infty+C$
V. M. Adamyan, D. Z. Arov, M. G. Krein
190–192
   8.6. Badly-approximable functions on curves and regions
L. A. Rubel
193–194
   9.6. Exotic Jordan arcs in $\mathbb R^n$
G. M. Henkin
195–196
   10.6. Regularity of boundary points for elliptic equations
V. G. Maz'ya
197–199
Chapter 7. Analytic capacity
200–201
   1.7. Removable sets for bounded analytic functions
D. E. Marshall
202–205
   2.7. On Painlevé null sets
W. K. Hayman
205–207
   3.7. Analytic capacity and rational approximation
A. G. Vitushkin, M. S. Mel'nikov
207–209
   4.7. About a null analytic capacity set
L. D. Ivanov
209–211
   5.7. Estimates of analytic capacity
J. Kral
212–217
Chapter 8. The Cauchy type integral
218
   1.8. $L^2$-boundedness of the Cauchy integral on Llipschitz graphs
A. P. Calderón
219
   2.8. On the Cauchy integral and related integral operators
R. R. Coifman, Y. Meyer
220–221
   3.8. On some questions concerning the classes of regions defining by properties of Cauchy type integrals
G. Ts. Tumarkin
222–225
Chapter 9. BMO
226
   1.9. Sets of uniqueness for QC
D. Sarason
227–228
   2.9. Some open problems concerning $H^\infty$ and BMO
J. Garnett
228–229
   3.9. Two conjectures by Albert Baernstein II
A. Baernstein II
230–232
   4.9. Blaschke products in $\mathscr B_0$
D. Sarason
233–234
   5.9. Algebras coutained within $H^\infty$
J. M. Anderson
235–236
Chapter 10. Uniqueness theorems
237
   1.10. Some open problems of the theory of analytic functions representations
M. M. Dzhrbashyan
238–241
   2.10. The uniquness sets for analytic function with finite Dirichlet integral
V. P. Havin, S. V. Khrushchev
242–245
   3.10. Quasianalytic properties of functions on respect to deferentiation operator
V. I. Matsaev
246–247
   4.10. Problems by R. Kaufman
R. M. Kaufman
247
   5.10. Local operators on Fourier transforms
L. de Branges
248
   6.10. The pick set for Lipschitz classes
E. M. Dyn'kin
249–251
   7.10. On a uniqueness theorem
V. V. Napalkov
252
Chapter 11. Interpolation and bases
253–254
   1.11. On the representation of functions by exponential series
A. F. Leont'ev
255–257
   2.11. Necessary conditions for interpolation by entire functions
B. A. Taylor
258–259
   3.11. On the multiplication and division of power series with the coefficient sequence from $l^p$ space
S. A. Vinogradov
260–262
   4.11. Rational functions with prescribed branching
A. A. Gol'dberg
263
   5.11. On the traces of $H^\infty(\mathbb B^N)$ functions on the hyperplanes
N. A. Shirokov
264–265
Chapter 12. Entire functions
266
   1.12. An inverse problem of the best approximation of uniformly continuous functions with the help of entire functions of exponential type and related questions
M. I. Kadets
266–267
   2.12. The zeros of sine type functions
B. Ya. Levin, I. V. Ostrovskii
268–270
   3.12. Operators conserving the completely regular growth
I. V. Ostrovskii
271–273
   4.12. Entire functions of the Laguerre–Pólya class
B. Ya. Levin
274–275
5.12. Two problems about limit properties of entire functions
V. S. Azarin
276
Chapter 13. Inner functions in the ball
277
   1.13. The inner function problem in balls
W. Rudin
278–280
   2.13. The extreme rays of the positive pluriharmonic functions
F. Forelli
281–282
Alphabetical index
283–289
Subject index
290–294
Notations
295
Çàïèñêè íàó÷íûõ ñåìèíàðîâ ÏÎÌÈ
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024