Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2009, Volume 21, Issue 2, Pages 264–279 (Mi aa1012)  

Spectral synthesis in the kernel of a convolution operator in weighted spaces

R. S. Yulmukhametov
References:
Abstract: Weighted spaces of analytic function on a bounded convex domain $D\subset \mathbb C^p$ are treated. Let $U =\{u_n\}_{n=1}^\infty$ be a monotone decreasing sequence of convex functions on $D$ such that $u_n(z)\to\infty$ as $\operatorname{dist}(z,\partial D)\to 0$. The symbol $H(D,U)$ stands for the space of all $f\in H(D)$ satisfying $|f(z)|\exp(-u_n(z))\to 0$ as $\operatorname{dist}(z,\partial D)\to 0$, for all $n\in \mathbb N$. This space is endowed with a locally convex topology with the aid of the seminorms $p_n(f)=\sup\limits_{z\in D}|f(z)|\exp(-u_n(z))$, $n=1,2,\dots$ . Clearly, every functional $S\in H^*(D)$ is a continuous linear functional on $H(D,U)$, and the corresponding convolution operator $M_S\colon f\to S_w(f(z+w))$ acts on $H(D,U)$. All elementary solutions of the equation $M_S[f]=0\ (*)$, i.e., all solutions of the form $z^\alpha e^{\langle a,z\rangle}$, $\alpha\in\mathbb Z_+^p$, $a\in\mathbb C^p$, belong to $H(D,U)$. It is shown that the system $E(S)$ of elementary solutions is dense in the space of solutions of equation $(*)$ that belong to $H(D,U)$.
Keywords: weighted spaces of analytic functions, convolution operator, spectral synthesis.
Received: 02.04.2007
English version:
St. Petersburg Mathematical Journal, 2010, Volume 21, Issue 2, Pages 353–363
DOI: https://doi.org/10.1090/S1061-0022-10-01098-8
Bibliographic databases:
Language: Russian
Citation: R. S. Yulmukhametov, “Spectral synthesis in the kernel of a convolution operator in weighted spaces”, Algebra i Analiz, 21:2 (2009), 264–279; St. Petersburg Math. J., 21:2 (2010), 353–363
Citation in format AMSBIB
\Bibitem{Yul09}
\by R.~S.~Yulmukhametov
\paper Spectral synthesis in the kernel of a~convolution operator in weighted spaces
\jour Algebra i Analiz
\yr 2009
\vol 21
\issue 2
\pages 264--279
\mathnet{http://mi.mathnet.ru/aa1012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2553049}
\zmath{https://zbmath.org/?q=an:1196.32007}
\transl
\jour St. Petersburg Math. J.
\yr 2010
\vol 21
\issue 2
\pages 353--363
\crossref{https://doi.org/10.1090/S1061-0022-10-01098-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275558100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871277121}
Linking options:
  • https://www.mathnet.ru/eng/aa1012
  • https://www.mathnet.ru/eng/aa/v21/i2/p264
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:663
    Full-text PDF :167
    References:107
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025