Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2018, Volume 30, Issue 3, Pages 93–111 (Mi aa1597)  

Research Papers

A functional model for the Fourier–Plancherel operator truncated to the positive semiaxis

V. Katsnelson

Department of Mathematics, The Weizmann Institute, 76100, Rehovot, Israel
References:
Abstract: The truncated Fourier operator $\mathscr F_{\mathbb R^+}$,
\begin{equation*} (\mathscr F_{\mathbb R^+}x)(t)=\frac1{\sqrt{2\pi}}\int_{\mathbb R^+}x(\xi)e^{it\xi}\,d\xi,\quad t\in\mathbb{R^+}, \end{equation*}
is studied. The operator $\mathscr F_{\mathbb R^+}$ is viewed as an operator acting in the space $L^2(\mathbb R^+)$. A functional model for the operator $\mathscr F_{\mathbb R^+}$ is constructed. This functional model is the operator of multiplication by an appropriate ($2\times2$)-matrix function acting in the space $L^2(\mathbb R^+)\oplus L^2(\mathbb R^+)$. Using this functional model, the spectrum of the operator $\mathscr F_{\mathbb R^+}$ is found. The resolvent of the operator $\mathscr F_{\mathbb R^+}$ is estimated near its spectrum.
Keywords: truncated Fourier–Plancherel operator, functional model for a linear operator.
Received: 27.10.2017
English version:
St. Petersburg Mathematical Journal, 2019, Volume 30, Issue 3, Pages 457–469
DOI: https://doi.org/10.1090/spmj/1553
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. Katsnelson, “A functional model for the Fourier–Plancherel operator truncated to the positive semiaxis”, Algebra i Analiz, 30:3 (2018), 93–111; St. Petersburg Math. J., 30:3 (2019), 457–469
Citation in format AMSBIB
\Bibitem{Kat18}
\by V.~Katsnelson
\paper A functional model for the Fourier--Plancherel operator truncated to the positive semiaxis
\jour Algebra i Analiz
\yr 2018
\vol 30
\issue 3
\pages 93--111
\mathnet{http://mi.mathnet.ru/aa1597}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3812001}
\elib{https://elibrary.ru/item.asp?id=32855066}
\transl
\jour St. Petersburg Math. J.
\yr 2019
\vol 30
\issue 3
\pages 457--469
\crossref{https://doi.org/10.1090/spmj/1553}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464555700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064738619}
Linking options:
  • https://www.mathnet.ru/eng/aa1597
  • https://www.mathnet.ru/eng/aa/v30/i3/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :38
    References:40
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025