Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 2, Pages 1–20 (Mi aa1689)  

Research Papers

On the invariance of Welschinger invariants

E. Brugallé

Université de Nantes, Laboratoire de Mathématiques Jean Leray, 2 rue de la Houssinière, F-44322 Nantes Cedex 3, France
References:
Abstract: Some observations about original Welschinger invariants defined in the paper Invariants of real symplectic $ 4$-manifolds and lower bounds in real enumerative geometry, Invent. Math. 162 (2005), no. 1, 195-234, are collected. None of their proofs is difficult, nevertheless these remarks do not seem to have been made before. The main result is that when $ X_\mathbb{R}$ is a real rational algebraic surface, Welschinger invariants only depend on the number of real interpolated points, and on some homological data associated with  $ X_\mathbb{R}$. This strengthened invariance statement was initially proved by Welschinger. This main result follows easily from a formula relating Welschinger invariants of two real symplectic manifolds that differ by a surgery along a real Lagrangian sphere. In its turn, once one believes that such a formula may hold, its proof is a mild adaptation of the proof of analogous formulas previously obtained by the author on the one hand, and by Itenberg, Kharlamov, and Shustin on the other hand. The two aforementioned results are applied to complete the computation of Welschinger invariants of real rational algebraic surfaces, and to obtain vanishing, sign, and sharpness results for these invariants, which generalize previously known statements. Some hypothetical relationship of the present work with tropical refined invariants defined in the papers Refined curve counting with tropical geometry, Compos. Math. 152 (2016), no. 1, 115-151, and Refined broccoli invariants, J. Algebraic Geom. 28 (2019), no. 1, 1-41, is also discussed.
Keywords: real enumerative geometry, Welschinger invariants, real rational algebraic surfaces, refined invariants.
Funding agency Grant number
Agence Nationale de la Recherche ENUMGEOM NR-18-CE40-0009-02
Conseil Régional des Pays de la Loire TROPICOUNT
This work was partially supported by the grant TROPICOUNT of Région Pays de la Loire, and the ANR project ENUMGEOM NR-18-CE40-0009-02.
Received: 04.12.2018
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 2, Pages 199–214
DOI: https://doi.org/10.1090/spmj/1644
Bibliographic databases:
Document Type: Article
MSC: Primary 14P05, 14N10; Secondary 14N35, 14P25
Language: English
Citation: E. Brugallé, “On the invariance of Welschinger invariants”, Algebra i Analiz, 32:2 (2020), 1–20; St. Petersburg Math. J., 32:2 (2021), 199–214
Citation in format AMSBIB
\Bibitem{Bru20}
\by E.~Brugall\'e
\paper On the invariance of Welschinger invariants
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 2
\pages 1--20
\mathnet{http://mi.mathnet.ru/aa1689}
\elib{https://elibrary.ru/item.asp?id=45950575}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 2
\pages 199--214
\crossref{https://doi.org/10.1090/spmj/1644}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000626332600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102842950}
Linking options:
  • https://www.mathnet.ru/eng/aa1689
  • https://www.mathnet.ru/eng/aa/v32/i2/p1
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :33
    References:34
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025