Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 2, Pages 45–84 (Mi aa1690)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts

O. L. Vinogradov

Saint Petersburg State University
Full-text PDF (409 kB) Citations (2)
References:
Abstract: Let $ \sigma >0$, and let $ G,B\in L(\mathbb{R})$. The paper is devoted to approximation of classes of functions  $ f$ for every $ \varepsilon >0$ representable as $\displaystyle f(x)=F_{\varepsilon }(x)+ \frac {1}{2\pi }\int _{\mathbb{R}}\varphi (t)G_{\varepsilon }(x-t) dt,$     where $ F_{\varepsilon }$ is an entire function of type not exceeding  $ \varepsilon $, $ G_{\varepsilon }\in L(\mathbb{R})$, and $ \varphi \in L_p(\mathbb{R})$. The approximating space  $ \mathbf S_B$ consists of functions of the form $\displaystyle s(x)=\sum _{j\in \mathbb{Z}}\beta _jB\Big (x-\frac {j\pi }{\sigma }\Big ).$     Under some conditions on $ G=\{G_{\varepsilon }\}$ and  $ B$, linear operators $ {\mathcal X}_{\sigma ,G,B}$ with values in  $ \mathbf S_B$ are constructed for which $ \Vert f-{\mathcal X}_{\sigma ,G,B}(f)\Vert _p\leq {\mathcal K}_{\sigma ,G}\Vert\varphi \Vert _p$. For $ p=1,\infty $ the constant $ {\mathcal K}_{\sigma ,G}$ (it is an analog of the well-known Favard constant) cannot be reduced, even if one replaces the left-hand side by the best approximation by the space  $ \mathbf S_B$. The results of the paper generalize classical inequalities for approximations by entire functions of exponential type and by splines.
Keywords: spaces of shifts, sharp constants, convolution, Akhiezer–Kreĭn–Favard type inequalities.
Funding agency Grant number
Russian Science Foundation 18-11-00055
This work was supported by the Russian Science Foundation under grant no. 18-11-00055
Received: 09.09.2018
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 2, Pages 233–260
DOI: https://doi.org/10.1090/spmj/1646
Bibliographic databases:
Document Type: Article
MSC: 41A17, 41A44
Language: Russian
Citation: O. L. Vinogradov, “Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts”, Algebra i Analiz, 32:2 (2020), 45–84; St. Petersburg Math. J., 32:2 (2021), 233–260
Citation in format AMSBIB
\Bibitem{Vin20}
\by O.~L.~Vinogradov
\paper Classes of convolutions with a singular family of kernels: Sharp constants for approximation by spaces of shifts
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 2
\pages 45--84
\mathnet{http://mi.mathnet.ru/aa1690}
\elib{https://elibrary.ru/item.asp?id=46764901}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 2
\pages 233--260
\crossref{https://doi.org/10.1090/spmj/1646}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000626332600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102835186}
Linking options:
  • https://www.mathnet.ru/eng/aa1690
  • https://www.mathnet.ru/eng/aa/v32/i2/p45
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :54
    References:66
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025