Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2020, Volume 32, Issue 4, Pages 200–216 (Mi aa1716)  

Research Papers

Limit model for the Vlasov–Maxwell system with strong magnetic fields via gyroaveraging

T. Kessler, S. Rjasanow

FR Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken
References:
Abstract: This paper deals with the Vlasov–Maxwell system in the case of a strong magnetic field. After a physically motivated nondimensionalization of the original system, a Hilbert expansion is employed around a small parameter given as the product of the characteristic time scale and the gyrofrequency. From this, necessary conditions on the solvability of the reduced system are derived. An important aspect is the reduction of the six-dimensional phase space to five dimensions. In addition to the discussion of the partial differential equations, also initial and boundary conditions both for the full system and the limit model are studied.
Keywords: Vlasov–Maxwell system, strong magnetic field, gyrokinetics.
Received: 28.05.2019
English version:
St. Petersburg Mathematical Journal, 2021, Volume 32, Issue 4, Pages 753–765
DOI: https://doi.org/10.1090/spmj/1668
Document Type: Article
Language: English
Citation: T. Kessler, S. Rjasanow, “Limit model for the Vlasov–Maxwell system with strong magnetic fields via gyroaveraging”, Algebra i Analiz, 32:4 (2020), 200–216; St. Petersburg Math. J., 32:4 (2021), 753–765
Citation in format AMSBIB
\Bibitem{KesRja20}
\by T.~Kessler, S.~Rjasanow
\paper Limit model for the Vlasov--Maxwell system with strong magnetic fields via gyroaveraging
\jour Algebra i Analiz
\yr 2020
\vol 32
\issue 4
\pages 200--216
\mathnet{http://mi.mathnet.ru/aa1716}
\transl
\jour St. Petersburg Math. J.
\yr 2021
\vol 32
\issue 4
\pages 753--765
\crossref{https://doi.org/10.1090/spmj/1668}
Linking options:
  • https://www.mathnet.ru/eng/aa1716
  • https://www.mathnet.ru/eng/aa/v32/i4/p200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :46
    References:41
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025