Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2022, Volume 34, Issue 5, Pages 53–74 (Mi aa1831)  

Research Papers

On the electric impedance tomography problem for nonorientable surfaces with internal holes

D. V. Korikov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $(M,g)$ be a compact smooth (generally speaking, not necessarily orientable) surface, and let $\Gamma_{0},\dots,\Gamma_{m-1}$ be the components of the boundary of $M$. Let $u=u^{f}(x)$ be the solution of te following problem: $\Delta_{g}u=0$ in $M$, $u|_{\Gamma_{0}}=f$, $u|_{\Gamma_{j}}=0$, $j=1,\dots,m'$, $\partial_{\nu}u|_{\Gamma_{j}}=0$, $j=m'+1,\dots,m-1$, where $\nu$ is the outward normal. With this problem, we associate the DN-operator $\Lambda\colon f\mapsto \partial_{\nu}u^{f}|_{\Gamma_{0}}$. The task is to recover $M$ if $\Lambda$ is given.
For solution, a version of the boundary comtrol method is applied. The principal role is played by the algebra $\mathfrak{A}$ of functions holomorphic on the orientable cover of $M$. We show that $\mathfrak{A}$ is determined by $\Lambda$ up to isometric isomorphism. The spectrum of $\mathfrak{A}$ makes it possible to construct a copy $M'$ of $M$. This copy is conformally equivalent to $M$, and its DN-operator coincides with $\Lambda$.
Keywords: electric impedance tomography of surfaces, algebraic version of the boundary control method.
Funding agency Grant number
Russian Foundation for Basic Research 20-01 627A
Received: 13.10.2021
English version:
St. Petersburg Mathematical Journal, 2023, Volume 34, Issue 5, Pages 759–774
DOI: https://doi.org/10.1090/spmj/1778
Document Type: Article
Language: Russian
Citation: D. V. Korikov, “On the electric impedance tomography problem for nonorientable surfaces with internal holes”, Algebra i Analiz, 34:5 (2022), 53–74; St. Petersburg Math. J., 34:5 (2023), 759–774
Citation in format AMSBIB
\Bibitem{Kor22}
\by D.~V.~Korikov
\paper On the electric impedance tomography problem for nonorientable surfaces with internal holes
\jour Algebra i Analiz
\yr 2022
\vol 34
\issue 5
\pages 53--74
\mathnet{http://mi.mathnet.ru/aa1831}
\transl
\jour St. Petersburg Math. J.
\yr 2023
\vol 34
\issue 5
\pages 759--774
\crossref{https://doi.org/10.1090/spmj/1778}
Linking options:
  • https://www.mathnet.ru/eng/aa1831
  • https://www.mathnet.ru/eng/aa/v34/i5/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :1
    References:30
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025