Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2024, Volume 36, Issue 3, Pages 103–151 (Mi aa1920)  

Research Papers

$L_1$ approach to the compressible viscous fluid flows in the half-space

Jou-Chun Kuoa, Yoshihiro Shibatabc

a School of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
b Waseda University
c Department of Mechanical Engineering and Materials Science, University of Pittsburgh, USA
References:
Abstract: The paper is devoted to the proof of the local well-posedness for the Navier–Stokes equations describing the motion of isotropic barotoropic compressible viscous fluid flow with nonslip boundary conditions, where the half-space $\mathbb{R}_+^N = \{x=(x_1, \ldots, x_N) \in \mathbb{R}^N \mid x_N>0\}$ ($N \geq 2$) is the fluid domain. The density part of the solutions belongs to
$$ W^1_1((0, T), B^s_{q,1}(\mathbb{R}_+^N)) \cap L_1((0, T), B^{s+1}_{q,1}(\mathbb{R}_+^N)) $$
and the velocity part of them belongs to
$$ W^1_1((0, T), B^{s}_{q,1}(\mathbb{R}_+^N)^N) \cap L_1((0, T), B^{s+2}_{q,1}(\mathbb{R}_+^N)), $$
where $B^\mu_{q,1}(\mathbb{R}_+^N)$ denotes the standard Besov space on $\mathbb{R}_+^N$. Namely, the equations are solved in the $L_1$ in time and $B^{s+1}_{q,1}(\mathbb{R}_+^N) \times B^s_{q,1}(\mathbb{R}_+^N)^N$ in space maximal regularity framework. The Lagrange transformation is used to eliminate the convection term $\mathbf{v}\cdot\nabla\rho$, and an analytic semigroup approach is invoked. Only the strict positivity of the initial mass density is assumed. An essential assumption is that $-1+N/q \leq s < 1/q $ and $N-1 < q < \infty$. Here, $N/q$ is the crucial order to obtain $\|\nabla \mathbf{u}\|_{L_\infty} \leq C\|\nabla\mathbf{u}\|_{B^{N/q}_{q,1}}$.
Keywords: Navier–Stokes equations, maximal $L_1$-regularity, local well-posedness.
Funding agency Grant number
Japan Science and Technology Agency JPMJSP2128
Japan Society for the Promotion of Science 22H01134
The first author is supported by JST SPRING, Grant Number JPMJSP2128. The second author is partially supported by JSPS KAKENHI Grant Number 22H01134.
Received: 21.10.2023
Document Type: Article
Language: English
Citation: Jou-Chun Kuo, Yoshihiro Shibata, “$L_1$ approach to the compressible viscous fluid flows in the half-space”, Algebra i Analiz, 36:3 (2024), 103–151
Citation in format AMSBIB
\Bibitem{KuoShi24}
\by Jou-Chun~Kuo, Yoshihiro~Shibata
\paper $L_1$ approach to the compressible viscous fluid flows in the half-space
\jour Algebra i Analiz
\yr 2024
\vol 36
\issue 3
\pages 103--151
\mathnet{http://mi.mathnet.ru/aa1920}
Linking options:
  • https://www.mathnet.ru/eng/aa1920
  • https://www.mathnet.ru/eng/aa/v36/i3/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :1
    References:28
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025