Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1993, Volume 5, Issue 3, Pages 238–251 (Mi aa394)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers

The $\mathcal T$$\mathcal{FA}$, amenability and continuity properties for groups acting on $\mathbb R$-trees

G. A. Noskov

Institute of Information Technologies and Applied Mathematics
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. A. Noskov, “The $\mathcal T$$\mathcal{FA}$, amenability and continuity properties for groups acting on $\mathbb R$-trees”, Algebra i Analiz, 5:3 (1993), 238–251; St. Petersburg Math. J., 5:3 (1994), 633–644
Citation in format AMSBIB
\Bibitem{Nos93}
\by G.~A.~Noskov
\paper The $\mathcal T$,~$\mathcal{FA}$, amenability and continuity properties for groups acting on $\mathbb R$-trees
\jour Algebra i Analiz
\yr 1993
\vol 5
\issue 3
\pages 238--251
\mathnet{http://mi.mathnet.ru/aa394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1239905}
\zmath{https://zbmath.org/?q=an:0954.57001}
\transl
\jour St. Petersburg Math. J.
\yr 1994
\vol 5
\issue 3
\pages 633--644
Linking options:
  • https://www.mathnet.ru/eng/aa394
  • https://www.mathnet.ru/eng/aa/v5/i3/p238
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024