|
This article is cited in 4 scientific papers (total in 4 papers)
Research Papers
Model functions with nearly prescribed modulus
Yu. S. Belov St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
Let $\Theta$ be an inner function on the upper half-plane, and let $K_\Theta=H^2\ominus\Theta H^2 $ be the corresponding model subspace. A nonnegative measurable function $\omega$ is said to be strongly admissible for $K_{\Theta}$ if there exists a nonzero function $f\in K_{\Theta}$ with $|f|\asymp\omega$. Certain condition sufficient for strong admissibility are given in the case where $\Theta$ is meromorphic.
Keywords:
Admissible function, Beurling–Mallivin theorem, model subspace, logarithmic integral.
Received: 20.12.2007
Citation:
Yu. S. Belov, “Model functions with nearly prescribed modulus”, Algebra i Analiz, 20:2 (2008), 3–18; St. Petersburg Math. J., 20:2 (2009), 163–174
Linking options:
https://www.mathnet.ru/eng/aa503 https://www.mathnet.ru/eng/aa/v20/i2/p3
|
Statistics & downloads: |
Abstract page: | 465 | Full-text PDF : | 207 | References: | 64 | First page: | 4 |
|