|
Algebra and Discrete Mathematics, 2006, выпуск 1, страницы 81–88
(Mi adm250)
|
|
|
|
RESEARCH ARTICLE
Uncountably many non-isomorphic nilpotent real $n$-Lie algebras
Ernest Stitzinger, Michael P. Williams North Carolina State University, Box 8205,
Raleigh, NC 27695
Аннотация:
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for $n$-Lie algebras. In particular, for $n\ge 6$, there are an uncountable number of non-isomorphic nilpotent real $n$-Lie algebras of dimension $n+4$.
Ключевые слова:
$n$-Lie algebras, nilpotent, algebraically independent, transcendence degree.
Образец цитирования:
Ernest Stitzinger, Michael P. Williams, “Uncountably many non-isomorphic nilpotent real $n$-Lie algebras”, Algebra Discrete Math., 2006, no. 1, 81–88
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm250 https://www.mathnet.ru/rus/adm/y2006/i1/p81
|
Статистика просмотров: |
Страница аннотации: | 135 | PDF полного текста: | 68 | Список литературы: | 5 | Первая страница: | 1 |
|