|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
RESEARCH ARTICLE
On the lattice of weak topologies on the bicyclic monoid with adjoined zero
S. Bardylaa, O. Gutikb a Institute of Mathematics, Kurt Gödel Research Center, Vienna, Austria
b Department of Mechanics and Mathematics, National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine
Аннотация:
A Hausdorff topology $\tau$ on the bicyclic monoid with adjoined zero $\mathcal{C}^0$ is called weak if it is contained in the coarsest inverse semigroup topology on $\mathcal{C}^0$. We show that the lattice $\mathcal{W}$ of all weak shift-continuous topologies on $\mathcal{C}^0$ is isomorphic to the lattice $\mathcal{SIF}^1\times\mathcal{SIF}^1$ where $\mathcal{SIF}^1$ is the set of all shift-invariant filters on $\omega$ with an attached element $1$ endowed with the following partial order: $\mathcal{F}\leq \mathcal{G}$ if and only if $\mathcal{G}=1$ or $\mathcal{F}\subset \mathcal{G}$. Also, we investigate cardinal characteristics of the lattice $\mathcal{W}$. In particular, we prove that $\mathcal{W}$ contains an antichain of cardinality $2^{\mathfrak{c}}$ and a well-ordered chain of cardinality $\mathfrak{c}$. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type $\mathfrak{t}$.
Ключевые слова:
lattice of topologies, bicyclic monoid, shift-continuous topology.
Поступила в редакцию: 17.09.2019 Исправленный вариант: 26.11.2019
Образец цитирования:
S. Bardyla, O. Gutik, “On the lattice of weak topologies on the bicyclic monoid with adjoined zero”, Algebra Discrete Math., 30:1 (2020), 26–43
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/adm763 https://www.mathnet.ru/rus/adm/v30/i1/p26
|
Статистика просмотров: |
Страница аннотации: | 107 | PDF полного текста: | 63 | Список литературы: | 30 |
|