Abstract:
It is proved that for every level of the arithmetic hierarchy, there exist infinitely many families of sets with pairwise non-elementarily equivalent Rogers semilattices.
Citation:
S. A. Badaev, S. S. Goncharov, A. Sorbi, “Elementary Theories for Rogers Semilattices”, Algebra Logika, 44:3 (2005), 261–268; Algebra and Logic, 44:3 (2006), 143–147
M. Kh. Faizrahmanov, “Effectively Infinite Classes of Numberings of Computable Families of Reals”, Russ Math., 67:5 (2023), 72
Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva, “Rogers semilattices of limitwise monotonic numberings”, Mathematical Logic Qtrly, 68:2 (2022), 213
Bazhenov N.A., Mustafa M., Tleuliyeva Zh., “Theories of Rogers Semilattices of Analytical Numberings”, Lobachevskii J. Math., 42:4, SI (2021), 701–708
S. S. Ospichev, “Fridbergovy numeratsii semeistv chastichno vychislimykh funktsionalov”, Sib. elektron. matem. izv., 16 (2019), 331–339
Bazhenov N., Mustafa M., Yamaleev M., “Elementary Theories and Hereditary Undecidability For Semilattices of Numberings”, Arch. Math. Log., 58:3-4 (2019), 485–500
S. A. Badaev, A. A. Issakhov, “Some absolute properties of $A$-computable numberings”, Algebra and Logic, 57:4 (2018), 275–288
M. Kh. Faizrahmanov, “Minimal generalized computable enumerations and high degrees”, Siberian Math. J., 58:3 (2017), 553–558
M. Kh. Faizrakhmanov, “Universal computable enumerations of finite classes of families of total functions”, Russian Math. (Iz. VUZ), 60:12 (2016), 79–83
S. S. Ospichev, “Computable families of sets in Ershov hierarchy without principal numberings”, J. Math. Sci., 215:4 (2016), 529–536
S. A. Badaev, S. S. Goncharov, “Generalized computable universal numberings”, Algebra and Logic, 53:5 (2014), 355–364
Serikzhan Badaev, Sergey Goncharov, New Computational Paradigms, 2008, 19
S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy”, Algebra and Logic, 45:6 (2006), 361–370
Badaev S.A., Talasbaeva Zh.T., “Computable numberings in the hierarchy of Ershov”, Mathematical Logic in Asia, 2006, 17–30