Loading [MathJax]/jax/output/SVG/config.js
Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 3, Pages 261–268 (Mi al110)  

This article is cited in 15 scientific papers (total in 15 papers)

Elementary Theories for Rogers Semilattices

S. A. Badaeva, S. S. Goncharovb, A. Sorbic

a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna
References:
Abstract: It is proved that for every level of the arithmetic hierarchy, there exist infinitely many families of sets with pairwise non-elementarily equivalent Rogers semilattices.
Keywords: arithmetic hierarchy, Rogers semilattice, elementary theory.
Received: 25.02.2003
Revised: 12.07.2004
English version:
Algebra and Logic, 2006, Volume 44, Issue 3, Pages 143–147
DOI: https://doi.org/10.1007/s10469-005-0016-x
Bibliographic databases:
UDC: 510.55
Language: Russian
Citation: S. A. Badaev, S. S. Goncharov, A. Sorbi, “Elementary Theories for Rogers Semilattices”, Algebra Logika, 44:3 (2005), 261–268; Algebra and Logic, 44:3 (2006), 143–147
Citation in format AMSBIB
\Bibitem{BadGonSor05}
\by S.~A.~Badaev, S.~S.~Goncharov, A.~Sorbi
\paper Elementary Theories for Rogers Semilattices
\jour Algebra Logika
\yr 2005
\vol 44
\issue 3
\pages 261--268
\mathnet{http://mi.mathnet.ru/al110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170687}
\zmath{https://zbmath.org/?q=an:1106.03041}
\transl
\jour Algebra and Logic
\yr 2006
\vol 44
\issue 3
\pages 143--147
\crossref{https://doi.org/10.1007/s10469-005-0016-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22344448658}
Linking options:
  • https://www.mathnet.ru/eng/al110
  • https://www.mathnet.ru/eng/al/v44/i3/p261
  • This publication is cited in the following 15 articles:
    1. Nikolay Bazhenov, Manat Mustafa, Anvar Nurakunov, “On Concept Lattices for Numberings”, Tsinghua Sci. Technol., 29:6 (2024), 1642  crossref
    2. M. Kh. Faizrakhmanov, “Effektivno beskonechnye klassy numeratsii vychislimykh semeistv deistvitelnykh chisel”, Izv. vuzov. Matem., 2023, no. 5, 96–100  mathnet  crossref
    3. M. Kh. Faizrahmanov, “Effectively Infinite Classes of Numberings of Computable Families of Reals”, Russ Math., 67:5 (2023), 72  crossref
    4. Nikolay Bazhenov, Manat Mustafa, Zhansaya Tleuliyeva, “Rogers semilattices of limitwise monotonic numberings”, Mathematical Logic Qtrly, 68:2 (2022), 213  crossref
    5. Bazhenov N.A., Mustafa M., Tleuliyeva Zh., “Theories of Rogers Semilattices of Analytical Numberings”, Lobachevskii J. Math., 42:4, SI (2021), 701–708  crossref  mathscinet  isi  scopus
    6. S. S. Ospichev, “Fridbergovy numeratsii semeistv chastichno vychislimykh funktsionalov”, Sib. elektron. matem. izv., 16 (2019), 331–339  mathnet  crossref
    7. Bazhenov N., Mustafa M., Yamaleev M., “Elementary Theories and Hereditary Undecidability For Semilattices of Numberings”, Arch. Math. Log., 58:3-4 (2019), 485–500  crossref  mathscinet  zmath  isi  scopus
    8. S. A. Badaev, A. A. Issakhov, “Some absolute properties of $A$-computable numberings”, Algebra and Logic, 57:4 (2018), 275–288  mathnet  crossref  crossref  isi
    9. M. Kh. Faizrahmanov, “Minimal generalized computable enumerations and high degrees”, Siberian Math. J., 58:3 (2017), 553–558  mathnet  crossref  crossref  isi  elib  elib
    10. M. Kh. Faizrakhmanov, “Universal computable enumerations of finite classes of families of total functions”, Russian Math. (Iz. VUZ), 60:12 (2016), 79–83  mathnet  crossref  isi
    11. S. S. Ospichev, “Computable families of sets in Ershov hierarchy without principal numberings”, J. Math. Sci., 215:4 (2016), 529–536  mathnet  crossref
    12. S. A. Badaev, S. S. Goncharov, “Generalized computable universal numberings”, Algebra and Logic, 53:5 (2014), 355–364  mathnet  crossref  mathscinet  isi
    13. Serikzhan Badaev, Sergey Goncharov, New Computational Paradigms, 2008, 19  crossref
    14. S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy”, Algebra and Logic, 45:6 (2006), 361–370  mathnet  crossref  mathscinet  zmath
    15. Badaev S.A., Talasbaeva Zh.T., “Computable numberings in the hierarchy of Ershov”, Mathematical Logic in Asia, 2006, 17–30  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :134
    References:82
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025