|
This article is cited in 15 scientific papers (total in 15 papers)
Elementary Theories for Rogers Semilattices
S. A. Badaeva, S. S. Goncharovb, A. Sorbic a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna
Abstract:
It is proved that for every level of the arithmetic hierarchy, there exist infinitely many families of sets with pairwise non-elementarily equivalent Rogers semilattices.
Keywords:
arithmetic hierarchy, Rogers semilattice, elementary theory.
Received: 25.02.2003 Revised: 12.07.2004
Citation:
S. A. Badaev, S. S. Goncharov, A. Sorbi, “Elementary Theories for Rogers Semilattices”, Algebra Logika, 44:3 (2005), 261–268; Algebra and Logic, 44:3 (2006), 143–147
Linking options:
https://www.mathnet.ru/eng/al110 https://www.mathnet.ru/eng/al/v44/i3/p261
|
Statistics & downloads: |
Abstract page: | 406 | Full-text PDF : | 121 | References: | 64 | First page: | 1 |
|