Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 3, Pages 261–268 (Mi al110)  

This article is cited in 15 scientific papers (total in 15 papers)

Elementary Theories for Rogers Semilattices

S. A. Badaeva, S. S. Goncharovb, A. Sorbic

a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna
References:
Abstract: It is proved that for every level of the arithmetic hierarchy, there exist infinitely many families of sets with pairwise non-elementarily equivalent Rogers semilattices.
Keywords: arithmetic hierarchy, Rogers semilattice, elementary theory.
Received: 25.02.2003
Revised: 12.07.2004
English version:
Algebra and Logic, 2006, Volume 44, Issue 3, Pages 143–147
DOI: https://doi.org/10.1007/s10469-005-0016-x
Bibliographic databases:
UDC: 510.55
Language: Russian
Citation: S. A. Badaev, S. S. Goncharov, A. Sorbi, “Elementary Theories for Rogers Semilattices”, Algebra Logika, 44:3 (2005), 261–268; Algebra and Logic, 44:3 (2006), 143–147
Citation in format AMSBIB
\Bibitem{BadGonSor05}
\by S.~A.~Badaev, S.~S.~Goncharov, A.~Sorbi
\paper Elementary Theories for Rogers Semilattices
\jour Algebra Logika
\yr 2005
\vol 44
\issue 3
\pages 261--268
\mathnet{http://mi.mathnet.ru/al110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170687}
\zmath{https://zbmath.org/?q=an:1106.03041}
\transl
\jour Algebra and Logic
\yr 2006
\vol 44
\issue 3
\pages 143--147
\crossref{https://doi.org/10.1007/s10469-005-0016-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22344448658}
Linking options:
  • https://www.mathnet.ru/eng/al110
  • https://www.mathnet.ru/eng/al/v44/i3/p261
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :121
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024