|
This article is cited in 8 scientific papers (total in 8 papers)
Test Rank for Some Free Polynilpotent Groups
Ch. K. Guptaa, E. I. Timoshenko a University of Manitoba
Abstract:
We prove a theorem on possible test rank values for groups of the form $F/R'$. It is shown that test rank of a free polynilpotent group $F_r(\mathbb{A}\mathbb{N}_{c_1}\ldots\mathbb{N}_{c_l})$ is equal to $r-1$ or $r$, for any $r \geqslant 2$ and every collection $(c_1,\ldots,c_l)$ of classes. Moreover, $tr(F_r(\mathbb{A}\mathbb{N}_c))=r-1$ for $r\geqslant 2$ and $c\geqslant 2$.
Keywords:
test rank, polynilpotent group, free group.
Received: 25.02.2001
Citation:
Ch. K. Gupta, E. I. Timoshenko, “Test Rank for Some Free Polynilpotent Groups”, Algebra Logika, 42:1 (2003), 37–50; Algebra and Logic, 42:1 (2003), 20–28
Linking options:
https://www.mathnet.ru/eng/al16 https://www.mathnet.ru/eng/al/v42/i1/p37
|
Statistics & downloads: |
Abstract page: | 359 | Full-text PDF : | 90 | References: | 72 | First page: | 1 |
|