Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2003, Volume 42, Number 1, Pages 37–50 (Mi al16)  

This article is cited in 8 scientific papers (total in 8 papers)

Test Rank for Some Free Polynilpotent Groups

Ch. K. Guptaa, E. I. Timoshenko

a University of Manitoba
Full-text PDF (194 kB) Citations (8)
References:
Abstract: We prove a theorem on possible test rank values for groups of the form $F/R'$. It is shown that test rank of a free polynilpotent group $F_r(\mathbb{A}\mathbb{N}_{c_1}\ldots\mathbb{N}_{c_l})$ is equal to $r-1$ or $r$, for any $r \geqslant 2$ and every collection $(c_1,\ldots,c_l)$ of classes. Moreover, $tr(F_r(\mathbb{A}\mathbb{N}_c))=r-1$ for $r\geqslant 2$ and $c\geqslant 2$.
Keywords: test rank, polynilpotent group, free group.
Received: 25.02.2001
English version:
Algebra and Logic, 2003, Volume 42, Issue 1, Pages 20–28
DOI: https://doi.org/10.1023/A:1022624723429
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: Ch. K. Gupta, E. I. Timoshenko, “Test Rank for Some Free Polynilpotent Groups”, Algebra Logika, 42:1 (2003), 37–50; Algebra and Logic, 42:1 (2003), 20–28
Citation in format AMSBIB
\Bibitem{GupTim03}
\by Ch.~K.~Gupta, E.~I.~Timoshenko
\paper Test Rank for Some Free Polynilpotent Groups
\jour Algebra Logika
\yr 2003
\vol 42
\issue 1
\pages 37--50
\mathnet{http://mi.mathnet.ru/al16}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988022}
\zmath{https://zbmath.org/?q=an:1034.20032}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 1
\pages 20--28
\crossref{https://doi.org/10.1023/A:1022624723429}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746457766}
Linking options:
  • https://www.mathnet.ru/eng/al16
  • https://www.mathnet.ru/eng/al/v42/i1/p37
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :90
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025