|
This article is cited in 25 scientific papers (total in 25 papers)
Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy
S. A. Badaeva, S. S. Goncharovb, A. Sorbic a Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
c Dipartimento di Scienze Matematiche ed Informatiche Roberto Magari, Università degli Studi di Sienna
Abstract:
We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.
Keywords:
arithmetical hierarchy, computable numbering, Rogers semilattice.
Received: 30.10.2005
Citation:
S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy”, Algebra Logika, 45:6 (2006), 637–654; Algebra and Logic, 45:6 (2006), 361–370
Linking options:
https://www.mathnet.ru/eng/al163 https://www.mathnet.ru/eng/al/v45/i6/p637
|
Statistics & downloads: |
Abstract page: | 425 | Full-text PDF : | 110 | References: | 61 | First page: | 9 |
|