Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2002, Volume 41, Number 2, Pages 130–142 (Mi al176)  

This article is cited in 13 scientific papers (total in 13 papers)

Recognizing Groups $G_2(3^n)$ by Their Element Orders

A. V. Vasil'ev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: It is proved that a finite group that is isomorphic to a simple non-Abelian group $G=G_2(3^n)$ is, up to isomorphism, recognized by a set $\omega(G)$ of its element orders, that is, $H \simeq G$ if $\omega(H)=\omega(G)$ for some finite group $H$.
Keywords: finite group, simple non-Abelian group, recognizability of groups by their element orders.
Received: 31.07.2000
English version:
Algebra and Logic, 2002, Volume 41, Issue 2, Pages 74–80
DOI: https://doi.org/10.1023/A:1015300429047
Bibliographic databases:
UDC: 512.542
Language: Russian
Citation: A. V. Vasil'ev, “Recognizing Groups $G_2(3^n)$ by Their Element Orders”, Algebra Logika, 41:2 (2002), 130–142; Algebra and Logic, 41:2 (2002), 74–80
Citation in format AMSBIB
\Bibitem{Vas02}
\by A.~V.~Vasil'ev
\paper Recognizing Groups $G_2(3^n)$ by Their Element Orders
\jour Algebra Logika
\yr 2002
\vol 41
\issue 2
\pages 130--142
\mathnet{http://mi.mathnet.ru/al176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1922985}
\zmath{https://zbmath.org/?q=an:1067.20017}
\elib{https://elibrary.ru/item.asp?id=12364104}
\transl
\jour Algebra and Logic
\yr 2002
\vol 41
\issue 2
\pages 74--80
\crossref{https://doi.org/10.1023/A:1015300429047}
\elib{https://elibrary.ru/item.asp?id=5025654}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1842515246}
Linking options:
  • https://www.mathnet.ru/eng/al176
  • https://www.mathnet.ru/eng/al/v41/i2/p130
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:559
    Full-text PDF :140
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024