Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2003, Volume 42, Number 1, Pages 94–106 (Mi al19)  

This article is cited in 1 scientific paper (total in 1 paper)

Markov Properties of Burnside Varieties of Semigroups

V. Yu. Popov
Full-text PDF (176 kB) Citations (1)
References:
Abstract: It is proved that every Markov property of semigroups finitely presented in a variety given by the identity $x^{r_1}=x^{r_2}$, where $r_1>r_2\geqslant 2$, which a one-element semigroup enjoys, is algorithmically non-recognizable.
Keywords: Burnside variety of semigroups, Markov property, finitely presented semigroup, algorithmic non-recognizability of properties.
Received: 18.01.2001
English version:
Algebra and Logic, 2003, Volume 42, Issue 1, Pages 54–60
DOI: https://doi.org/10.1023/A:1022680808408
Bibliographic databases:
UDC: 512:519.4
Language: Russian
Citation: V. Yu. Popov, “Markov Properties of Burnside Varieties of Semigroups”, Algebra Logika, 42:1 (2003), 94–106; Algebra and Logic, 42:1 (2003), 54–60
Citation in format AMSBIB
\Bibitem{Pop03}
\by V.~Yu.~Popov
\paper Markov Properties of Burnside Varieties of Semigroups
\jour Algebra Logika
\yr 2003
\vol 42
\issue 1
\pages 94--106
\mathnet{http://mi.mathnet.ru/al19}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1988025}
\zmath{https://zbmath.org/?q=an:1034.20049}
\elib{https://elibrary.ru/item.asp?id=8967700}
\transl
\jour Algebra and Logic
\yr 2003
\vol 42
\issue 1
\pages 54--60
\crossref{https://doi.org/10.1023/A:1022680808408}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249095473}
Linking options:
  • https://www.mathnet.ru/eng/al19
  • https://www.mathnet.ru/eng/al/v42/i1/p94
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :113
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025