|
This article is cited in 2 scientific papers (total in 2 papers)
Computable embeddings for pairs of linear orders
N. A. Bazhenova, H. Ganchevb, S. Vatevb a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Sofia University St. Kliment Ohridski
Abstract:
We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that $\{\omega \cdot k,\omega^\star \cdot k\}$ is computably embeddable in $\{\omega \cdot t, \omega^\star \cdot t\}$ iff $k$ divides $t$.
Keywords:
computable embedding, enumeration operator, computable linear order.
Received: 23.04.2020 Revised: 18.10.2021
Citation:
N. A. Bazhenov, H. Ganchev, S. Vatev, “Computable embeddings for pairs of linear orders”, Algebra Logika, 60:3 (2021), 251–285; Algebra and Logic, 60:3 (2021), 163–187
Linking options:
https://www.mathnet.ru/eng/al2662 https://www.mathnet.ru/eng/al/v60/i3/p251
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 14 | References: | 26 | First page: | 3 |
|