Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2013, Volume 52, Number 5, Pages 535–552 (Mi al601)  

This article is cited in 3 scientific papers (total in 3 papers)

Computable numberings of the class of Boolean algebras with distinguished endomorphisms

N. A. Bazhenovab

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
Full-text PDF (231 kB) Citations (3)
References:
Abstract: We deal with computable Boolean algebras having a fixed finite number $\lambda$ of distinguished endomorphisms (briefly, $E_\lambda$-algebras). It is shown that the index set of $E_\lambda$-algebras is $\Pi^0_\2$-complete. It is proved that the class of all computable $E_\lambda$-algebras has a $\Delta^0_3$-computable numbering but does not have a $\Delta^0_2$-computable numbering, up to computable isomorphism. Also for the class of all computable $E_\lambda$-algebras, we explore whether there exist hyperarithmetical Friedberg numberings, up to $\Delta^0_\alpha$-computable isomorphism.
Keywords: computable Boolean algebra with distinguished endomorphisms, computable numbering, Friedberg numbering, index set, isomorphism problem.
Received: 17.07.2013
English version:
Algebra and Logic, 2013, Volume 52, Issue 5, Pages 355–366
DOI: https://doi.org/10.1007/s10469-013-9247-4
Bibliographic databases:
Document Type: Article
UDC: 512.563+510.5+510.6
Language: Russian
Citation: N. A. Bazhenov, “Computable numberings of the class of Boolean algebras with distinguished endomorphisms”, Algebra Logika, 52:5 (2013), 535–552; Algebra and Logic, 52:5 (2013), 355–366
Citation in format AMSBIB
\Bibitem{Baz13}
\by N.~A.~Bazhenov
\paper Computable numberings of the class of Boolean algebras with distinguished endomorphisms
\jour Algebra Logika
\yr 2013
\vol 52
\issue 5
\pages 535--552
\mathnet{http://mi.mathnet.ru/al601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184658}
\transl
\jour Algebra and Logic
\yr 2013
\vol 52
\issue 5
\pages 355--366
\crossref{https://doi.org/10.1007/s10469-013-9247-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000328340100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888993284}
Linking options:
  • https://www.mathnet.ru/eng/al601
  • https://www.mathnet.ru/eng/al/v52/i5/p535
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:278
    Full-text PDF :58
    References:68
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024