Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2024, Volume 25, Issue 1, Pages 26–41
DOI: https://doi.org/10.22405/2226-8383-2024-25-1-26-41
(Mi cheb1400)
 

Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities

A. I. Denisov, I. V. Denisov

Tula State Lev Tolstoy Pedagogical University (Tula)
References:
Abstract: In the rectangle $\Omega =\{(x,t) | 0<x<1, 0<t<T\}$ we consider an initial-boundary value problem for a singularly perturbed parabolic equation
$$ \varepsilon^2\left(a^2\frac{\partial^2 u}{\partial x^2}-\frac{\partial u}{\partial t}\right)=F(u,x,t,\varepsilon), (x,t)\in \Omega, $$

$$ u(x,0,\varepsilon)=\varphi(x), 0\le x\le 1, $$

$$ u(0,t,\varepsilon)=\psi_1(t), u(1,t,\varepsilon)=\psi_2(t), 0\le t\le T. $$
Research is carried out under the assumption that at the corner points $(k,0)$ of the rectangle $\Omega$, where $k=0$ or $1$, the function $F(u)=F(u,k,0,0)$ is cubic and has the form
$$ F(u)=(u-\alpha(k))(u-\beta(k))(u-\bar u_0(k)), \text{ where } \alpha(k)\leq\beta(k)<\bar u_0(k). $$

The nonlinear method of angular boundary functions is used, which combines the (linear) method of angular boundary functions, the method of upper and lower solutions (barriers), and the method of differential inequalities. Under the condition $\varphi(k)>\bar u_0(k)$, a complete asymptotic expansion of the solution for $\varepsilon\rightarrow 0$ is constructed and its uniformity in a closed rectangle is substantiated.
Previously, the following cases of cubic nonlinearities were considered:
$$ F(u)=u^3-\bar u^3_0, \text{ where } \bar u_0=\bar u_0(k)>0, $$
under the assumption that the boundary value $\varphi( k)>\bar u_0(k)$, as well as the case
$$ F(u)=u^3-\bar u^3_0, \text{ where } \bar u_0=\bar u_0(k)< 0, $$
under the assumption that the boundary value $\varphi(k)$ is contained in the interval
$$ \bar u_0<\varphi(k)<\frac{\bar u_0}{2}< 0. $$
Keywords: boundary layer, asymptotic approximation, singularly perturbed equation.
Received: 19.12.2023
Accepted: 21.03.2024
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. I. Denisov, I. V. Denisov, “Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities”, Chebyshevskii Sb., 25:1 (2024), 26–41
Citation in format AMSBIB
\Bibitem{DenDen24}
\by A.~I.~Denisov, I.~V.~Denisov
\paper Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities
\jour Chebyshevskii Sb.
\yr 2024
\vol 25
\issue 1
\pages 26--41
\mathnet{http://mi.mathnet.ru/cheb1400}
\crossref{https://doi.org/10.22405/2226-8383-2024-25-1-26-41}
Linking options:
  • https://www.mathnet.ru/eng/cheb1400
  • https://www.mathnet.ru/eng/cheb/v25/i1/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:20
    Full-text PDF :8
    References:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024