Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2013, Volume 14, Issue 3, Pages 9–19 (Mi cheb284)  

On the residual finiteness of generalized free products with cyclic amalgamation

D. N. Azarov

Ivanovo State University
References:
Abstract: Let $G$ be the free product of residually finite groups $A$ and $B$ with amalgamated cyclic subgroups $H$ and $K$. It is proved that if there exist homomorphisms of the groups $A$ and $B$ onto virtually polycyclic groups which are injective on the subgroups $H$ and $K$ then $G$ is a residually finite group.
Keywords: generalized free product of groups, residually finite group.
Received: 18.09.2013
Document Type: Article
UDC: 512.543
Language: Russian
Citation: D. N. Azarov, “On the residual finiteness of generalized free products with cyclic amalgamation”, Chebyshevskii Sb., 14:3 (2013), 9–19
Citation in format AMSBIB
\Bibitem{Aza13}
\by D.~N.~Azarov
\paper On the residual finiteness of generalized free products with cyclic amalgamation
\jour Chebyshevskii Sb.
\yr 2013
\vol 14
\issue 3
\pages 9--19
\mathnet{http://mi.mathnet.ru/cheb284}
Linking options:
  • https://www.mathnet.ru/eng/cheb284
  • https://www.mathnet.ru/eng/cheb/v14/i3/p9
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :106
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025