Chebyshevskii Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chebyshevskii Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chebyshevskii Sbornik, 2014, Volume 15, Issue 3, Pages 48–85 (Mi cheb352)  

This article is cited in 2 scientific papers (total in 2 papers)

Method N. M. Korobova approximate solution of the Dirichlet problem

A. V. Rodionov

Tula State Pedagogical University
Full-text PDF (874 kB) Citations (2)
References:
Abstract: The paper discusses the generalization of the method embodiments N. M. Korobov approximate solution of the Dirichlet problem for equations of the form
$$Q\left(\frac{\partial }{\partial x_1},\ldots,\frac{\partial }{\partial x_s}\right)u(\mathbf{x})=f(\mathbf{x}),$$
where the functions $u(\mathbf{x}),f(\mathbf{x}),\varphi(\mathbf{x})$ belongs to the class of functions $E_s^\alpha$ in case of using generalized Parallelepipedal nets $M(\Lambda)$ integral lattices $\Lambda$.
Particular attention is paid to the class of differential operators, consisting of operators $Q\left(\frac{\partial }{\partial x_1},\ldots,\frac{\partial }{\partial x_s}\right)$ with zero kernel. The importance of this class of operators due to the fact that up to a constant solution of differential equations with partial derivatives for these operators is uniquely determined. An example of such an operator is the Laplace operator.
In the work, an approximate solution of the Dirichlet problem for partial differential equations using arbitrary generalized parallelepiped mesh $M(\Lambda)$ integer lattice $\Lambda$ for a certain class of periodic functions and shown that by using an infinite sequence of nested grids is generalized parallelepipedal nets sufficiently fast convergence of the approximate solutions to the function $u(\mathbf{x})$.
Bibliography: 15 titles.
Keywords: parallelepiped nets, partial differential equations, the Dirichlet problem.
Received: 06.06.2014
Document Type: Article
UDC: 511.3
Language: Russian
Citation: A. V. Rodionov, “Method N. M. Korobova approximate solution of the Dirichlet problem”, Chebyshevskii Sb., 15:3 (2014), 48–85
Citation in format AMSBIB
\Bibitem{Rod14}
\by A.~V.~Rodionov
\paper Method N.\,M.~Korobova approximate solution of the Dirichlet problem
\jour Chebyshevskii Sb.
\yr 2014
\vol 15
\issue 3
\pages 48--85
\mathnet{http://mi.mathnet.ru/cheb352}
Linking options:
  • https://www.mathnet.ru/eng/cheb352
  • https://www.mathnet.ru/eng/cheb/v15/i3/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :77
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024