Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Chelyab. Fiz.-Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Chelyabinskiy Fiziko-Matematicheskiy Zhurnal, 2024, Volume 9, Issue 4, Pages 622–633
DOI: https://doi.org/10.47475/2500-0101-2024-9-4-622-633
(Mi chfmj408)
 

Mathematics

On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval

M. A. Petrosova

School № 1234, Moscow, Russia
References:
Abstract: For Bernstein polynomials on the symmetric interval $[-1,1]$, a growth rate problem for the sum of coefficient moduli is considered. Used representations of the polynomials is indicated. We give a possible way to solve the problem through special numerical objects (Pascal's trapezoids). These objects are related to various combinatorial identities. The obtained result improves Roulier's previous estimate, which applies to the sum of coefficient moduli as the index of the Bernstein polynomial increases.
Keywords: Bernstein polynomials, symmetric interval, estimates of coefficients, Pascal's trapezoids.
Received: 20.07.2024
Revised: 20.09.2024
Document Type: Article
UDC: 517.518.82+517.15+519.66
Language: Russian
Citation: M. A. Petrosova, “On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval”, Chelyab. Fiz.-Mat. Zh., 9:4 (2024), 622–633
Citation in format AMSBIB
\Bibitem{Pet24}
\by M.~A.~Petrosova
\paper On estimating the sum of coefficient moduli in Bernstein polynomials on a symmetric interval
\jour Chelyab. Fiz.-Mat. Zh.
\yr 2024
\vol 9
\issue 4
\pages 622--633
\mathnet{http://mi.mathnet.ru/chfmj408}
\crossref{https://doi.org/10.47475/2500-0101-2024-9-4-622-633}
Linking options:
  • https://www.mathnet.ru/eng/chfmj408
  • https://www.mathnet.ru/eng/chfmj/v9/i4/p622
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
    Statistics & downloads:
    Abstract page:31
    Full-text PDF :19
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025