Contemporary Mathematics. Fundamental Directions
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Publishing Ethics

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



CMFD:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Contemporary Mathematics. Fundamental Directions, 2003, Volume 3, Pages 33–42 (Mi cmfd14)  

Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory

A. G. Sergeev

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We consider the adiabatic limit for nonlinear dynamic equations of gauge field theory. Our main example of such equations is given by the Abelian $(2+1)$-dimensional Higgs model. We show next that the Taubes correspondence, which assigns pseudoholomorphic curves to solutions of Seiberg–Witten equations on symplectic 4-manifolds, may be interpreted as a complex analogue of the adiabatic limit construction in the $(2+1)$-dimensional case.
English version:
Journal of Mathematical Sciences, 2004, Volume 124, Issue 6, Pages 5407–5416
DOI: https://doi.org/10.1023/B:JOTH.0000047361.38336.26
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. G. Sergeev, “Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory”, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, CMFD, 3, MAI, M., 2003, 33–42; Journal of Mathematical Sciences, 124:6 (2004), 5407–5416
Citation in format AMSBIB
\Bibitem{Ser03}
\by A.~G.~Sergeev
\paper Adiabatic Limit for Some Nonlinear Equations of Gauge Field Theory
\inbook Proceedings of the International Conference on Differential and Functional-Differential Equations --- Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11--17 August, 2002). Part~3
\serial CMFD
\yr 2003
\vol 3
\pages 33--42
\publ MAI
\publaddr M.
\mathnet{http://mi.mathnet.ru/cmfd14}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2129143}
\zmath{https://zbmath.org/?q=an:1072.58007}
\transl
\jour Journal of Mathematical Sciences
\yr 2004
\vol 124
\issue 6
\pages 5407--5416
\crossref{https://doi.org/10.1023/B:JOTH.0000047361.38336.26}
Linking options:
  • https://www.mathnet.ru/eng/cmfd14
  • https://www.mathnet.ru/eng/cmfd/v3/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Современная математика. Фундаментальные направления
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :80
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024